B www.freenove.com D4 support@freenove.com _

Getting Started

Thank you for choosing Freenove products!
After you download the ZIP file we provide. Unzip it and you will get a folder contains several files and folders.
There are two PDF files:

® Tutorial.pdf
It contains basic operations such as installing system for Raspberry Pi.
The code in this PDF is in C and Python.

® Processing.pdf in Freenove_Super_Starter_Kit_for_Raspberry_Pi\Processing
The code in this PDF is in Java.

We recommend you to start with Tutorial.pdf first.

If you want to start with Processing.pdf or skip some chapters of Tutorial.pdf, you need to finish necessary
steps in Chapter 7 AD/DA of Tutorial.pdf first.

Remove the Chips

Some chips and modules are inserted into the breadboard to protect their pins.
You need to remove them from breadboard before use. (There is no need to remove GPIO Extension Board.)
Please find a tool (like a little screw driver) to handle them like below:

[Step 1, lift one end slightly.]

[Step 2, lift another end slightly.]

support@freenove.com [l

http://www.freenove.com/
mailto:support@freenove.com

I o< support@freenove.com www.freenove.com [l

[Step 3, take off the chip with hand.]

Avoid lifting one end with big angle directly.

Get Support and Offer Input

Freenove provides free and responsive product and technical support, including but not limited to:

Product quality issues

Product use and build issues

Questions regarding the technology employed in our products for learning and education
Your input and opinions are always welcome

We also encourage your ideas and suggestions for new products and product improvements

For any of the above, you may send us an email to:

support@freenove.com

Safety and Precautions

Please follow the following safety precautions when using or storing this product:

Keep this product out of the reach of children under 6 years old.

This product should be used only when there is adult supervision present as young children lack
necessary judgment regarding safety and the consequences of product misuse.

This product contains small parts and parts, which are sharp. This product contains electrically conductive
parts. Use caution with electrically conductive parts near or around power supplies, batteries and
powered (live) circuits.

When the product is turned ON, activated or tested, some parts will move or rotate. To avoid injuries to
hands and fingers, keep them away from any moving parts!

It is possible that an improperly connected or shorted circuit may cause overheating. Should this happen,
immediately disconnect the power supply or remove the batteries and do not touch anything until it

B support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com
mailto:support@freenove.com

B www.freenove.com D4 support@freenove.com _

cools down! When everything is safe and cool, review the product tutorial to identify the cause.

® Only operate the product in accordance with the instructions and guidelines of this tutorial, otherwise
parts may be damaged or you could be injured.

® Store the product in a cool dry place and avoid exposing the product to direct sunlight.

® After use, always turn the power OFF and remove or unplug the batteries before storing.

About Freenove

Freenove provides open source electronic products and services worldwide.

Freenove is committed to assist customers in their education of robotics, programming and electronic circuits
so that they may transform their creative ideas into prototypes and new and innovative products. To this end,
our services include but are not limited to:

Educational and Entertaining Project Kits for Robots, Smart Cars and Drones
Educational Kits to Learn Robotic Software Systems for Arduino, Raspberry Pi and micro: bit
Electronic Component Assortments, Electronic Modules and Specialized Tools

Product Development and Customization Services
You can find more about Freenove and get our latest news and updates through our website:

http://www.freenove.com

Copyright

All the files, materials and instructional guides provided are released under Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License. A copy of this license can be found in the folder containing
the Tutorial and software files associated with this product.

This means you can use these resource in your own derived works, in part or completely, but NOT for the
intent or purpose of commercial use.

Freenove brand and logo are copyright of Freenove Creative Technology Co., Ltd. and cannot be used without

written permission.
\ /
/ =~

FREENOVE

Raspberry Pi® is a trademark of Raspberry Pi Foundation (https://www.raspberrypi.org/).

®

support@freenove.com Il

http://www.freenove.com/
mailto:support@freenove.com
http://www.freenove.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.raspberrypi.org/

support@freenove.com www freenove.com Il
Contents
e gV TS = =T TP I
REMOVE the CRIPS...o e recesesee s sses s e sss e sse s s s e s ane e s e E e e anE e s s e e s ane e s anenrananes I
SATELY AN PrECAULIONSottt ettt ettt ettt ettt ettt ettt e et e I
ADOUL FIBENOVE ...ttt b bbbttt bbb [
(OL0])Y g [o] o) SF S OOEOR O OUORUUURRTRRR [
L0707 01 =T 01 PR TTT v
o =] - T T 1
(3] 0 o= 4 Y TP 2
Installing an OPerating SYSLEM ... s ss s s s s s s se e e s s sn s s s s s snanansnsnesnnses 9
COMPONENT LISt. ...ttt ettt ettt ettt ettt ettt sttt 9
OPtIONAl COMPONENESeivieieie ettt ettt ettt ettt s ettt 11
RASPIDEITY PiOS ..ttt h et e ettt et s s bbbttt 13
Getting Started WIth RASPDEITY Pl......oii ettt 18
Chapter 0 Preparation..... et resss e sasss e sessses s s e e et sessssssesesesssssassesesssssasssassesestssassssesenssasssasassens 27
LINUX COMIMIANG....tiiiitiiiit ettt s st b et b s s s bbbt s bbb bbbt b st 27
INSTAIT MVITINGPI .ttt b ettt e b bt s et bbbttt ettt e et 30
ODBtaIN the PrOJECT COUE. . ..ottt ettt ettt ettt et neeens 32
PYTNONZ & PYTNONS ...ttt bbbttt ettt 33
L0 0 T=T o 1 =Yt R 1 0 TP 35
PIOJECT 1.1 BINK .ottt ettt ettt ettt 35
Freenove Car, Robot and other products for Raspberry Pi........c.ccovoiiiiiiiiceeeeeeeeeeeeeeee e 57
Chapter 2 BUETLONS &t LEDScucuiccererecrerecseseseesseseessssessssesessssesessssssessssssesssssesessasesssssssessssssesssssssseasssssessasssessanes 58
Project 2.1 Push BUtton SWILCh & LED ..o 58
Project 2.2 MINI TabhlE LA ..ottt 65
Chapter 3 LED Bar Graph s ss s s ssssese e sss s s s s ssasasssssssesssssesssssssssssasassssssnanensenns 71
Project 3.1 FIOWING Water LIGNTot 71
Chapter 4 ANAIOG & PWIM... s sssesssesesssss s ssssssssssssesssssesessssssssssssassssssssssssssssssssssssssssssassssssnsnsasenns 77
Project 4.1 Breathing LED......... ettt 77
Chapter 5 RGB LED.......cccrrsresesesesesesssesssssssssssssesssssessssssssssssssassssssssssassesssssasssssssssassssssnsssassssssasasssssssssassssnsnsnssnns 85
Project 5.1 MUILICOIOIEA LEDooiiiiieiieieceeeeee ettt 86
08 T=T o =T g SN =0 7.2 Y 92
Project 6.1 DOOIDEIL ...ttt bbbt 92
PrOJECE 5.2 AlBITON ... ettt ettt ettt s sttt h et sttt b et b ettt e et e e 99
(IMportant) Chapter 7 ADC.... s s s s e e e e e e 104
Project 7.1 Read the Voltage Of POLENTIOMETETcooiiiiiiiiieieee e 104
Chapter 8 Potentiometer & LED ...ttt sssssss s ss s s s s s ssssanenes 120
PrOJECE 8.1 SOTE LIGNT. ..ottt ettt ettt 120
Chapter 9 PhotoreSiStor & LED ... sssssss s ssssssss s ssssssssssesesssssssssssssssssssasenes 127
ProJECE 9.1 NIGNTLAMID .ottt bttt bbbttt 127
(04 T T o =Y gl K I I g T=T g 4 T o TP 135
ProjeCt 10.1 TREIMMNMOMELETc.ivieieeee ettt ettt ettt 135

B support@freenove.com

http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com support@freenove.com

Chapter 11 MOTOI & DIIVEN ... rerereececccsessssessssssesesese s ssss s s s s ssssasssssesesssssssssssssssssssssasssssesesssssssssssssssasasanes 143
Project 11.1 Control a DC Motor with @ POtENTIOMELEc.ceeeeeceeeeee e 143
Chapter 12 74HC595 & Bar Graph LED ... s ssssssssssssssssssssesssssssssssssssssssasassnes 158
Project 12.1 FIOWING Water LIGNt.. ..ottt 158
Chapter 13 74HC595 & 7-Segment DiSPlay ... sssssesssss s sesssessssssssesesssessssssssssssssssans 167
Project 13.1 7-SegMENTt DISPIAYcoiiiiiiieiceiee ettt 167
Chapter 14 74HCS595 & LED IMALIIXcoveirrrresenirirersss et sessssssesesesssesssssssesssssssassesssesssesssassesessssesassessssssssssnans 174
PrOJECE 14.1 LED IMIALIIX co.eiuiuiiiei ettt ettt 174
Chapter 15 LCDILB02.........cccvrecrereersreseessesesssssessssssesesssssessssssesessssssessasssesssssssssssssssesessssssessssssessssesssssssessasssesssses 186
Project 15.1 [2C LCDIB0Z ...ttt ettt ettt 186
(04 g F=1 o1 (= gt KSR VAT =Y o T Lo 1 T YT TV 197
Project 16.1 REMOTE LEDiiiiiiiiieeee ettt ettt ettt 197
WWhAt'S INEXE? ..oeocecrerecsesecssse s ssseesssse e s sse s s e ss s sse s sss e as s se e s sne e e sse e A e e e s A nEnE e AnEsE e e A nEnE e nEnE s s s nE e s sne e ananen 202

support@freenove.com [l

http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com X support@freenove.com

Preface

Raspberry Pi is a low cost, credit card sized computer that plugs into a computer monitor or TV, and uses a
standard keyboard and mouse. It is an incredibly capable little device that enables people of all ages to explore
computing, and to learn how to program in a variety of computer languages like Scratch and Python. It is
capable of doing everything you would expect from a desktop computer, such as browsing the internet,
playing high-definition video content, creating spreadsheets, performing word-processing, and playing video
games. For more information, you can refer to Raspberry Pi official website. For clarification, this tutorial will
also reference Raspberry Pi as RPi, RPI and RasPi.

In this tutorial, most chapters consist of Components List, Component Knowledge, Circuit, and Code (C
code and Python code). We provide both C and Python code for each project in this tutorial. After completing
this tutorial, you can learn Java by reading Processing.pdf.

This kit does not contain Raspberry and its accessories. You can also use the components and modules in

this kit to create projects of your own design.

Additionally, if you encounter any issues or have questions about this tutorial or the contents of kit, you can
always contact us for free technical support at:

support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://www.raspberrypi.org/
mailto:support@freenove.com

< support@freenove.com

www.freenove.com [l

Raspberry P

So far, at this writing, Raspberry Pi has advanced to its fourth generation product offering. Version changes
are accompanied by increases in upgrades in hardware and capabilities.

The Atype and B type versions of the first generation products have been discontinued due to various reasons.
What is most important is that other popular and currently available versions are consistent in the order and
number of pins and their assigned designation of function, making compatibility of peripheral devices greatly

enhanced between versions.

Below are the raspberry pi pictures and model pictures supported by this product. They have 40 pins.

" INEHOZ609LUL |
s| gwiooay | €12

CAD image of Raspberry Pi 4 Model B:

13NY3HL3

©
o
«
o
[
@
a
a
@
©
14
©

@
o
°
2
<~
o
@
a
a
@
©
o

%

’ : (A\ﬂds‘m) 1Sa
JURRSRNRRRRNNRE
T

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

D4 support@freenove.com

Actual image of Raspberry Pi 3 Model B+:

|

........,....:1'

J1PWR IN

n
T =Avdsia [
-

_‘\illllilllllllll/

CAD image of Raspberry Pi 3 Model B+:

NN

13NY3HLT

&

pberry Pi 3 Model B+
aspberry Pi 2017

(Av1dsia) Isa

Actual image of Raspberry Pi 3 Model B:

WA A\ A

8
=
&
>
2
S
fis

1D: 2ABCS

CAD image of Raspberry Pi 3 Model B:

NN

L3INY3IHLI

o =
)

= .u
3 -

CSI (CAMERA)

Model Bv1.2
y Pi 2015

(AV1dSIQ) ISC
LT €

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Actual image of Raspberry Pi 2 Model B: CAD image of Raspberry Pi 2 Model B:
. - - R

Raspberry Pi 2 Model B
© Raspberry Pi 2014

it i www saspbecrypi.org

Avesia

TTITTITTIIIIIIIL

(AV1ds10) I1ISa
RENRRRNERENNEND

CAD image of Raspberry Pi 1 Model B+:
1

it Jiwww raspbecrypi.org

N
-
>
+
m
°
o
<]
=
o
)
£
@
Q
Q
7]
©
o

<
-
o
3
a
2
E
@
Q
a
@
[\
o
(@]

3 AesTo 3
REEARETERENTEELS

(AV1dS10) I1ISa
RENNRRNERENNEND

L

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Actual image of Raspberry Pi 3 Model A+: CAD image of Raspberry Pi 3 Model A+:

-~z -

CSI (CAMERA)

|

=
<
o
o
s}
=
)
o
2
=
[}
2
aQ
w
©
o

© Raspberry Pi 2018

rypi.org

hitp:/fwaw raspber

(Av1dsia) Isa

‘ BERENRENEREE

1V Hhd
i), L),

3

NN

=
<
-
-

-
s
b4

&
<V
EF’
o
B
=g
gz
>
£3
2%
%m
4
x o

GPIO

AV1ds1a

TITEEEIIIIIIINY

(Av1dsia) ISa

. BERRENNNNENNEND
L L

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m < support@freenove.com www.freenove.com [l

Actual image of Raspberry Pi Zero W: CAD image of Raspberry Pi Zero W:

B

Raspberry Pi Zero W

(LY PR
GHDTH® *

e
@
N
o
@
a
o
@
T
o

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Hardware interface diagram of RPi 4B:
e

““““““““““

GPIO

Connector Raspberry Pi 4 Model B
© Raspberry Pi 2018

Ethernet
Connector

ETHERNET

Display
Connector

USB
Connector x4

Power
Power
Connector g

CSI (CAMERA)
|

Micro HDMI
Connector x2

Camera

Connector Connector

Hardware interface diagram of RPi 3B+/3B/2B/1B+:
e

GPIO
Raspberry Pi 3 Model Bv1.2
Connector © Raspberry Pi 2015

USB
Connector

Display
Connector

DSI (DISPLAY)

Ethernet
Connector

ETHERNET

Power

(Y¥3UVD) ISD

Connector

HDMI
Connector

Camera

Connector

Connector

Hardware interface diagram of RPi 3A+/A+:

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m < support@freenove.com www.freenove.com [l

GPIO i IR
GPIO
COl’meCtOl’ Raspberry Pi Model A+
© Raspberry Pi 2014

USB
Connector

Display
Connector

(v43Wv0) IS0

Power

Connector

HDMI
Connector

Audio
Connector

Camera

Connector

Hardware interface diagram of RPi Zero/Zero W:

GPIO

Connector
Raspberry Pi Zero W

Camera
Connector

HDMI Power

Connector

Connector Connector

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

DX support@freenove.com _

B www.freenove.com

Installing an Operating System

The first step is to install an operating system on your RPi so that it can be programmed and function. If you
have installed a system in your RPi, you can start from Chapter O Preparation.

Component List

Required Components

5V/3A Power Adapter. Note: Different versions of
Raspberry Pi have different power requirements
(please check the power requirements for yours
on the chart in the following page.)

Any Raspberry Pi with 40 GPIO

& Rosgbercy Pi 4 Model B
©Raspberry Pi 2016

na M 1904

Trxcom® |-
CNUS

I TRIGO926HENL |

?
3 Chi.

Micro SD Card (TF Card) x1, Card Reader x1

SAMSUNG 0'’zgsn

D asoronw

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Power requirements of various versions of Raspberry Pi are shown in following table:

Product Recommended | Maximum total USB Typical bare-board
PSU current peripheral current draw active current
capacity consumption

Raspberry Pi Model A 700mA 500mA 200mA

Raspberry Pi Model B 1.2A 500mA 500mA

Raspberry Pi Model A+ 700mA 500mA 180mA

Raspberry Pi Model B+ 1.8A 600mMA/1.2A (switchable) 330mA

Raspberry Pi 2 Model B 1.8A 600mA/1.2A (switchable) 350mA

Raspberry Pi 3 Model B 2.5A 1.2A 400mA

Raspberry Pi 3 Model A+ 2.5A Limited by PSU, board, and 350mA

connector ratings only.

Raspberry Pi 3 Model B+ = 2.5A 1.2A 500mA

Raspberry Pi 4 Model B 3.0A 1.2A 600mA

Raspberry Pi Zero W 1.2A Limited by PSU, board, and 150mA

connector ratings only.

Raspberry Pi Zero 1.2A Limited by PSU, board, and 100mA

connector ratings only
For more details, please refer to https.//www.raspberrypi.org/help/fags/#powerRegs

In addition, RPi also needs an Ethernet network cable used to connect it to a WAN (Wide Area Network).

All these components are necessary for any of your projects to work. Among them, the power supply of at
least 5V/2.5A, because a lack of a sufficient power supply may lead to many functional issues and even
damage your RPi, we STRONGLY RECOMMEND a 5V/2.5A power supply. We also recommend using a SD
Micro Card with a capacity of 16GB or more (which, functions as the RPI's “hard drive”) and is used to store
the operating system and necessary operational files.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://www.raspberrypi.org/help/faqs/#powerReqs

B www.freenove.com D4 support@freenove.com

Optional Components

Under normal circumstances, there are two ways to login to Raspberry Pi: 1) Using a stand-alone monitor. 2)
Using a remote desktop or laptop computer monitor “sharing” the PC monitor with your RPi.

Required Accessories for Monitor

If you choose to use an independent monitor, mouse and keyboard, you also need the following accessories:
1. A display with a HDMI interface
2. A Mouse and a Keyboard with an USB interface

As to Pi Zero and Pi Zero W, you also need the following accessories:
1. A Mini-HDMI to HDMI Adapter and Cable.

2. A Micro-USB to USB-A Adapter and Cable (Micro USB OTG Cable).
3. A USB HUB.

4. USB to Ethernet Interface or USB Wi-Fi receiver.

For different Raspberry Pi Modules, the optional items may vary slightly but they all aim to convert the
interfaces to Raspberry Pi standards.

. . Pi Zero . . Pi .
Pi Zero Pi A+ Pi3A+ PiB+/2B Pi 4B
W 3B/3B+
Monitor Yes (All)
Mouse Yes (All)
Keyboard Yes (All)
Micro-HDMI to HDMI
Yes No Yes No No No No
Adapter & Cable
Micro-HDMI to HDMI
No Yes
Adapter & Cable
Micro-USB to USB-A
Adapter & Cable
) Yes No Yes No
(Micro USB OTG
Cable)
USB HUB Yes Yes Yes Yes No No
USB to Ethernet = select one from) Internal
optional . .
Interface two or select two Integration Internal Integration
USB Wi-Fi Receiver from two Internal Integration optional

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Required Accessories for Remote Desktop

If you do not have an independent monitor, or if you want to use a remote desktop, you first need to login
to Raspberry Pi through SSH, and then open the VNC or RDP service. This requires the following accessories.

Pi Zero PiZeroW PiA+ Pi 3A+ Pi B+/2B Pi 3B/3B+/4B
Micro-USB to USB-A Yes Yes No
Adapter & Cable
(Micro USB OTG
Cable) NO
USB to Ethernet Yes Yes Yes

interface

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Raspberry Pi OS

Without Screen - Use Raspberry Pi - under Windows PC: https://youtu.be/YNDORUuUP-to

With Screen - Use Raspberry Pi - under Windows PC: https://youtu.be/HEywFsFrj3|

Automatically Method

You can follow the official method to install the system for raspberry pi via visiting link below:
https://projects.raspberrypi.org/en/projects/raspberry - pi-setting-up/2
In this way, the system will be downloaded automatically via the application.

Manually Method

After installing the Imager Tool in the link above. You can also download the system manually first.

Visit https://www.raspberrypi.org/downloads/

Manually install an operating system image

Browse a range of operating systems provided by
Raspberry Pi and by other organisations, and download \l/
them to install manually.

See all download options /

Operating system images

Many operating systems are available for Raspberry Pi, including
Raspberry Pi OS, our official supported operating system, and
operating systems from other organisations.

Raspberry Pi lmager is the quick and easy way to install an operating Download:
system to a microSD card ready to use with your Raspberry Pi. Raspberry Pi 0S (32-bit)
Alternatively, choose from the operating systems below, available to Raspberry Pi Desktop
download and install manually. Third-Party operating systems
Raspberry Pi 0S
Compatible with: Raspberry Pi 0S with desktop and recommended software
All Raspberrym Release date: January 11th 2021
Kernel version: 5.4 Download
Size: 2.863MB

Show SHA256 file integrity hash: Download torrent
Release notes

And then the zip file is downloaded.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/YND0RUuP-to
https://youtu.be/HEywFsFrj3I
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/2
https://www.raspberrypi.org/downloads/

< support@freenove.com www.freenove.com [l

Write System to Micro SD Card
First, put your Micro SD card into card reader and connect it to USB port of PC.

SAMSUNG 0'zgsn

D asoronw

Then open imager toll. Choose system that you just downloaded in Use custom.

Raspberry Pi

Operating System SD Card

CHOOSE 0s CHOOSE SD CARD

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Operating System X

ST TSmO aassy 1TT1U.'HED

LibreELEC >
A Kodi Entertainment Center distribution

Ubuntu >
Choose from Ubuntu Core and Server images
EEFROM recovery, etc.

Erase
Format card as FAT32

Use custom

&
®
Qs
[]
|

Select a custom .img from your computer

Choose the SD card. Then click “WRITE”.

Raspberry Pi

Operating System SD Card

2020-02-13-RASPBIAN-BUSTER-FULL.ZIP CHOOSE SD C...

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Enable ssh and configure WiFi

& Raspberry PiImager v1.62 - o X

'

nl rren

Raspberry Pi ;

Operating System Storage Download
2021-05-07-RASPIOS-BUSTER-ARMHF-FULL.ZIP CHOOSE ST..
13

Download torrent

Press Ctrl+Shift+x to configure RPI.

@ Raspberry Pi Imager v1.6.2 - a X

Advanced options X

Image customization options for this session only v

[] pisable overscan

Set hostname: raspberrypi . Tocal

[& Enable SSH

O Use password authentication

rd for 'pi’ user

Sel passw

' Raspberry Pi Imager v1.6.2 - a X

NS TV RIS] L e S i

Configure wifi
- | WiFi name

e

Password:

Show password

Wifi country: GB -

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

& Raspberry Pi Imager v1.6.2 = a X

Write Successful X

2021-05-07-raspios-buster-armhf-full.zip has been written to
Generic MassStorageClass USB Device

You can now remove the SD card from the reader

CONTINUE

Insert SD card

Then remove SD card from card reader and insert it into Raspberry Pi.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Getting Started with Raspberry Pi

Monitor desktop

If you do not have a spare monitor, please skip to next section Remote desktop & VNC. If you have a spare
monitor, please follow the steps in this section.

After the system is written successfully, take out Micro SD Card and put it into the SD card slot of RPi. Then
connect your RPi to the monitor through the HDMI port, attach your mouse and keyboard through the USB
ports, attach a network cable to the network port and finally, connect your power supply (making sure that it
meets the specifications required by your RPi Module Version. Your RPi should start (power up). Later, after

setup, you will need to enter your user name and password to login. The default user name: pi; password:

raspberry. After login, you should see the following screen.
s & = 3 T 0 o

Congratulations! You have successfully installed the RASPBERRY PI OS operating system on your RPi.

Raspberry Pi 4B, 3B+/3B integrates a Wi-Fi adaptor. You can use it to connect to your Wi-Fi. Then you can
use the wireless remote desktop to control your RPi. This will be helpful for the following work. Raspberry Pi
of other models can use wireless remote desktop through accessing an external USB wireless card.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Remote desktop & VNC

If you have logged in Raspberry Pi via display, you can skip to VNC Viewer.

If you don't have a spare display, mouse and keyboard for your RPi, you can use a remote desktop to share
a display, keyboard, and mouse with your PC. Below is how to use:
MAC OS remote desktop and Windows OS remote desktop.

MAC OS Remote Desktop

Open the terminal and type following command. If this command doesn’t work, please move to next page.
ssh pi@raspberrypi.local
The password is raspberry by default, case sensitive.

@ Terminal Shell Edit View Window Help

[NN % freenove — ssh pi@raspberrypi.local — 80x24

Last login: Wed Jul 22 16:44: =
[freenove@PandeMacBook-Air ~ ssh pi@raspberrypi.local]
pi@raspberrypi.local's passw

You may need to type yes during the process.

@ Terminal Shell Edit View Window Help

® O @ - freenove — pi@raspberrypi: ~— ssh pi@raspberrypi.local — 80x24
Last login: Wed Jul 22 16:49:43 on ttys@00 =]
[freenove@PPandeMacBook—-Air ~ % ssh pi@raspberrypi.local]

[pi@raspberrypi.local's password:]
Linux raspberrypi 4.19.58-v7+ #1245 SMP Fri Jul 12 17:25:51 BST 2019 armv7l

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

Last login: Wed Jul 22 09:56:01 2020 from fe80::82d:356d:4027:2fc5%wlan®

SSH is enabled and the default password for the 'pi' user has not been changed.

This is a security risk — please login as the 'pi' user and type 'passwd' to set
a new password.

piPraspberrypi:~ $ I

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com www.freenove.com [l

You can also use the IP address to log in Pi.
Enter router client to inquiry IP address named “raspberry pi”. For example, | have inquired to my RPi IP
address, and it is “192.168.1.131".

Open the terminal and type following command.
ssh pi@192.168.1.131
When you see pi@raspberrypi:~ $, you have logged in Pi successfully. Then you can skip to next section.

@ Terminal Shell Edit View Window Help

@® @ freenove — pi@raspberrvoi: ~ — ssh pi@192.168.1.131 — 81x44

[freenove@PandeMacBook-Air ~ %|ssh pi@192.168.1.131 B
The authenticity of host '192.168.1.131 (192.168.1.131)' can't be established.
ECDSA key fingerprint is SHA256:95hc761SxQ/+z9TGG57136senETX60yaAaqds1ENpE4.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

| Warning: Permanently added '192.168.1.131' (ECDSA) to the list of known hosts.
[pi192.168.1.131's password:

Linux raspberrypi 4.19.58-v7+ #1245 SMP Fri Jul 12 17:25:51 BST 2019 armv71l

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Wed Jul 22 09:56:32 2020 from fe80::82d:356d:4027:2fc5%wlan®

SSH is enabled and the default password for the 'pi' user has not been changed.
This is a security risk — please login as the 'pi' user and type 'passwd' to set
a new password.

[pi@raspberrypi:~ $ sudo raspi-config

Raspberry Pi 3 Model A Plus Rev 1.0

Raspberry Pi Software Configuration Tool (raspi-config)

1 Change User Password Change password for the current user

2 Network Options Configure network settings

3 Boot Options Configure options for start-up

4 Localisation Options Set up language and regional settings to match your
5 Interfacing Options Configure connections to peripherals

6 Overclock Configure overclocking for your Pi

7 Advanced Options Configure advanced settings

8 Update Update this tool to the latest version

9

About raspi-config Information about this configuration tool

<Finish>

<Select>

Then you can skip to VNC Viewer.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

If you are using winl0, you can use follow way to login RaspberryPi without desktop.
Press Win+R. Enter cmd. Then use this command to check IP:
ping raspberrypi.local

BX Select Command Prompt _

fa

Finging .I:"l"_-.-‘}::-i. 1|:|-::::51:l [rdded:
The one befind raspberrypi.local is the IPV6 address of RaspberryPi
Use following command to login Raspberry Pi.

ssh pi@xooxxxxxxx(IPV6 address)
Enter yes not y if needed.

B5T 2 armvil

] re free software;
th wact dis
indivicdual fi

with ABSOLUTELY NO WARRANTY, to the extent

HEET

ar Tt
gged y Pi

carrier 0 collisions 0

mtu 1)
i (Ethernet)

frame 0
carrier 0 collisions O

wlanl:

rier 0 collisions ()

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

M4 support@freenove.com

www.freenove.com Il

VNC Viewer & VNC
Enable VNC

Type the following command. And select Interface Options>P3 VNC = Enter>Yes—>OK. Here Raspberry Pi
may need be restarted, and choose ok. Then open VNC interface.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Set Resolution
You can also set other resolutions. If you don't know what to set, you can set it as 1280x720 first.

Then download and install VNC Viewer according to your computer system by click following link:
https://www.realvnc.com/en/connect/download/viewer/

After installation is completed, open VNC Viewer. And click File = New Connection. Then the interface is
shown below.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://www.realvnc.com/en/connect/download/viewer/

< support@freenove.com www.freenove.com [l

raspberry pi - Properties - O X

General QOptions Expert

VNC Server: [192.168.1.117 |

Marme: |raspberr_|,r pi| |

Labels

To nest labels, separate names with a forward slash (/)

Enter a label name, or press Down to apply existing labels |

Security

Encryption: Let VMC Server choose ~ |

[#] Authenticate using single sign-on (550) if possible

Authenticate using a smartcard or certificate store if

o
- possible

Privacy
Update desktop preview automatically

Cance

Enter ip address of your Raspberry Pi and fill in a name. Then click OK.
Then on the VNC Viewer panel, double-click new connection you just created,

VNC Viewer - O b4
File View Help

|EnteraVNC Server address or search | sgignin... A

raspberry pi

and the following dialog box pops up.

Authentication X

VNC Server: 192.168.1.117:5900

Username: |pi |

Password: |......... |

Remember password

Catchphrase: Sister logo octopus. Giraffe Gloria time.

Signature: 8b-6b-40-50-f6-9d-8b-f8

Gance

Enter username: pi and Password: raspberry. And click OK.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

Here, you have logged in to Raspberry Pi successfully by using VNC Viewer
If there is black window, please set another resolution.

Cannot currently show the des

In addition, your VNC Viewer window may zoom your Raspberry Pi desktop. You can change it. On your
VNC View control panel, click right key. And select Properties->Options label->Scaling. Then set proper
scaling.

3 raspberry pi - Properties — O >
General Options Expert
General
Picture quality: | Automatic w
[View-only
—i\' Scaling
Connect
raspbe |190% v
Rename F2 Preserve aspect ratio
Delete
. K
Duplicate Ctrl+D i
; Pass media keys directly to VNC Server
Properties... Alt+Enter
Pass special keys directly to VNC Server

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Here, you have logged in to Raspberry Pi successfully by using VNC Viewer and operated proper setting.

Raspberry Pi 4B/3B+/3B integrates a Wi-Fi adaptor.If you did not connect Pi to WiFi. You can connect it to
wirelessly control the robot.
NN |

thinclient_driy.
es

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

Why “Chapter 0"? Because in program code the first number is 0. We choose to follow this rule. In this chapter,

we will do some necessary foundational preparation work: Start your Raspberry Pi and install some necessary
libraries.

Raspberry Pi OS is based on the Linux Operation System. Now we will introduce you to some frequently used
Linux commands and rules.

First, open the Terminal. All commands are executed in Terminal.

> Terminal

When you click the Terminal icon, following interface appears.

File Edit Tabs Help

pi@raspberrypl:

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

Note: The Linux is case sensitive.
First, type “Is” into the Terminal and press the “Enter” key. The result is shown below:

File Edit Tabs Help

plfraspberrypi:

The "Is” command lists information about the files (the current directory by default).

Content between “$" and "pi@raspberrypi:” is the current working path. “~" represents the user directory,
which refers to “/home/pi” here.

“cd” is used to change directory. “/” represents the root directory
pifiraspberrypi: '
pl@raspberrypl:

pl@raspberrypi:
pi@raspberrypi:

Later in this Tutorial, we will often change the working path. Typing commands under the wrong directory
may cause errors and break the execution of further commands.

Many frequently used commands and instructions can be found in the following reference table.

Is Lists information about the FILEs (the current directory by default) and entries
alphabetically.

cd Changes directory

sudo + cmd Executes cmd under root authority

S Under current directory

gcc GNU Compiler Collection

git clone URL Use git tool to clone the contents of specified repository, and URL in the repository address.
There are many commands, which will come later. For more details about commands. You can refer to:
http://www.linux-commands-examples.com

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://www.linux-commands-examples.com/

Now, we will introduce several commonly used shortcuts that are very useful in Terminal.

1. Up and Down Arrow Keys: Pressing “1” (the Up key) will go backwards through the command history and
pressing “V" (the Down Key) will go forwards through the command history.

2. Tab Key: The Tab key can automatically complete the command/path you want to type. When there is only
one eligible option, the command/path will be completely typed as soon as you press the Tab key even you
only type one character of the command/path.

As shown below, under the '~ directory, you enter the Documents directory with the “cd” command. After
typing “cd D", pressing the Tab key (there is no response), pressing the Tab key again then all the files/folders
that begin with “D” will be listed. Continue to type the letters "oc" and then pressing the Tab key, the
“Documents” is typed automatically.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

WiringPi is a GPIO access library written in C language for the used in the Raspberry Pi.

To install the WiringPi library, please open the Terminal and then follow the steps and commands below.
Note: For a command containing many lines, execute them one line at a time.

Enter the following commands one by one in the terminal to install WiringPi:

sudo apt-get update

git clone https://github.com/WiringPi/WiringPi

cd WiringPi

/build

cd WiringPi1
i@raspberrypi: ./build
P1 Build

To compile programs with wiringP1i,
iringP1i

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://github.com/WiringPi/WiringPi

Run the gpio command to check the installation:

gpio -v

That should give you some confidence that the installation was a success.

Y NO WARRANTY

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com www.freenove.com [l

Obtain the Project Code

After the above installation is completed, you can visit our official website (http://www.freenove.com) or our
GitHub resources at (https://github.com/freenove) to download the latest available project code. We provide
both C language and Python language code for each project to allow ease of use for those who are skilled
in either language.

This is the method for obtaining the code:
In the pi directory of the RPi terminal, enter the following command.

(There is no need for a password. If you get some errors, please check your commands.)

After the download is completed, a new folder "Freenove_Super_Starter_Kit_for_Raspberry_Pi" is generated,
which contains all of the tutorials and required code.

This folder name seems a little too long. We can simply rename it by using the following command.

"Freenove Kit" is now the new and much shorter folder name.

$ @ B Fewea

File Edit View Sort Go Tools
D5k 886 ‘ [n & /> | /home/pi/Freenove_Kit -
= [Name Size Modified Description -
» [| Code [ICode Saturday, December 28,2019 17:39 folder
» D Datasheet l:l Datashest Saturday, December 28,2019 17:39 folder
> |:| Processing l:l Processing Saturday, December 28,2019 17:39 folder
» D Freenove_Three-wheeled_Smart_Ca | | & List_Ultimate_RPi_Kit jpg 939.8 KiB Saturday, December 28,2019 17:39 JPEG image
» D MagPi = readmemd 2.4 KiB Saturday, December 28,2019 17:39 Markdown document
» D mu_code E Processing pdf 13.1 MiB Saturday, December 28, 2019 17:39 PDF document
b Music E Read Me First pdf 643.8 KiB Saturday, December 28, 2018 17:39 PDF document
> [zal Pictures E Tutorial pdf 16.3 MIB Saturday, December 28,2019 17:39 PDF document
» D Processing = LICENSE.txt 19.1 KiB Saturday, December 28, 2019 17:39 plain text document

If you have no experience with Python, we suggest that you refer to this website for basic information and
knowledge.
https://python.swaroopch.com/basics.html

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://www.freenove.com/
https://github.com/freenove
https://python.swaroopch.com/basics.html

If you only use C/C++, you can skip this section.

Python code, used in our kits, can now run on Python2 and Python3. Python3 is recommend. If you want to
use Python2, please make sure your Python version is 2.7 or above. Python2 and Python3 are not fully
compatible. However, Python2.6 and Python2.7 are transitional versions to python3, therefore you can also
use Python2.6 and 2.7 to execute some Python3 code.

You can type “python2” or “python3” respectively into Terminal to check if python has been installed. Press
Ctrl-Z to exit.

or "license" for more information.

14:11:084)

or "license" for more information.

17:33:09)

or "license" for more information.

If you want to use Python3 in Raspberry Pi, it is recommended to set python3 as default Python by following
the steps below.

1. Enter directory /usr/bin

cd /usr/bin

2. Delete the old python link.

sudo rm python

3. Create new python links to python3.

sudo In -s python3 python

4. Execute python to check whether the link succeeds.

draspberrypi:
iraspberrypi:
aspberrypi:

14:11:084)

" or "license" for more information.

"credits'

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

If you want to use Python2, repeat the steps above and just change the third command to the following:
sudo In -s python2 python

pifiraspberrypi

F .13 11 . NC 2017, 17:33:09)

"license" T

We will only use the term “Python” without reference to Python2 or Python3. You can choose to use either.
Finally, all the necessary preparations have been completed! Next, we will combine the RPi and electronic
components to build a series of projects from easy to the more challenging and difficult as we focus on
learning the associated knowledge of each electronic circuit.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Chapter 1 LED

This chapter is the Start Point in the journey to build and explore RPi electronic projects. We will start with
simple “Blink” project.

Project 1.1 Blink

In this project, we will use RPi to control blinking a common LED.

Component List

Raspberry Pi GPIO Extension Board & Ribbon Cable
(Recommended: Raspberry Pi 4B / 3B+ / 3B
Compatible: 3A+ /2B / 1B+ / 1A+ / Zero W / Zero)

|

BERREREEEREEEREREEREERE R ERRERERREREERD
Raspberry Pi GPIO Extension Shield

#3V3 5Ve
#SDA1 5Ve
eSCL1 GNDs
#GPIO4 TXDOs
#GND RXDO0s
#GPIO17 GPIO18s
#GPIO27 GNDs
#GPI022 GPIO23e
#3V3 GPI024e
«MOSI GNDs
«MISO GPIO25s
#SCK CEOa
#GND CEle
#SDA0 SCLO»
#GPIO5 GNDs
#GPIO6 GPIO12s
#GPIO13 GNDs
#GPIO19 GPIO16e
#GP1026 GPIO20s
#GND GPIO21e

L3INY3HLT

@
— 0
S5
gN
=N
vﬁ
ey
ef
3

23
o4
S o
£

” - (AvV1dsia) Isa

Breadboard x1

LI A ® o 0 00 ® o o 0o o ® o 0o 00 ® o o 0 0 L A ® o 0o 0o 0 ® o 0 00 ® o 0 0 0 ® o 0 0 0

e o 0o 00 ® o 0o 00 ® o 0o 00 ® ° o 0 o e o 0o o0 e o 0 00 ® o 0 0 0 ® o 0 00 e ° o e
® © 0 0 0 0 9 O ° 0 O O O O O O G G OO G G O O O O O GG O O O O O G O OO OO OO S OO OGO OSSO G G OO S OGSO S
© © © 0 0 0 0 © 0 0 OO O O O O O O O O OO O SO O SO O S S G GO O
© © © 0 0 0 9 © O 0 0 O O O O O O O O O O O O G OO O O O O O O O O S O OO G O OO O OO O O O OO S O S G GG G e S SO O
© © © 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O OO O S O G O OO OO G OO O OO O O OO O O OO OO O OO OO O O SO OO
® © © 0 0 0 9 0O 0 0 O O O O O O O G O O O O OO O O O O G O OO O O O O O OO O OO O OO OO OO S S OGSO S GO S

© © © 0 0 0 0 O © 0 0 0 ° O O O O O O O OO O O O O S O O O S OO O O O OO S G OO OO O O O OO O S S GO SO O S GG O O
©® © © 0 0 0 9 © 0 0 0 O O O O O O O O O O O O O O O O G O O O O O O O O O O O O O O OO OO O OO S O GG GO OO S OGO S
© © © 0 6 0 9 O 0 0 O O O O O O O O O OO O O O OO O OO O O OO O O O OO O O O O OO OO O O O OO O S S OO O S SO SO
© © © 0 0 0 0 © 0 0 0 0 ° ® O O O O O O O O O 0 O O O O O O O O O O O O OO O O OO O S OO O OO OO O G OO G O S S GO e
®© © © 0 0 0 0 ° © 0 0 0 OO O OO O O O OO O OO OO OGSO O O S OGO O
e e o oo ® o 0 0 0 ® o o 0o e o o 0o o ® o 0o 0 o e o LR ® o o 00 ® o 0o 0 o . ® e 0 0 0
e o e 0o ® o 0 0 0 ® o o 0 o ® o o 00 ® o 0o 0 o o o 0 0 ® o o 0o o e o o 0o o ® o 0 o 0 ® e 0 0 0

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

LED x1 Resistor 220Q x1 Jumper
Specific quantity depends on the circuit.

—ea. 4444444

In the components list, 3B GPIO, Extension Shield Raspberry and Breadboard are necessary for each project.
Later, they will be reference by text only (no images as in above).

GPIO

GPIO: General Purpose Input/Output. Here we will introduce the specific function of the pins on the Raspberry
Pi and how you can utilize them in all sorts of ways in your projects. Most RPi Module pins can be used as
either an input or output, depending on your program and its functions.

When programming GPIO pins there are 3 different ways to reference them: GPIO Numbering, Physical
Numbering and WiringPi GPIO Numbering.

BCM GPIO Numbering

The Raspberry Pi CPU uses Broadcom (BCM) processing chips BCM2835, BCM2836 or BCM2837. GPIO pin
numbers are assigned by the processing chip manufacturer and are how the computer recognizes each pin.
The pin numbers themselves do not make sense or have meaning as they are only a form of identification.
Since their numeric values and physical locations have no specific order, there is no way to remember them
so you will need to have a printed reference or a reference board that fits over the pins.

Each pin’s functional assignment is defined in the image below:

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

D4 support@freenove.com

Pin 1
+3V3 +5Y
GPIOZ [SDAL +5V
GPIO3 [SCL1 GND
GPIO4 TXDO / GPIO 14
GND RXDO / GPIO 15
GPIO17 GPIO 18
GPIOZT GND
DSI (DISPLAY) @ GPIO22 GPIO 23
@ . o +3V3 GPIO 24
GPIOL0 / MOSI GND
— GFI03 | MISO GPIO 25
g of GPIO11 / SCLK CEO0# / GPIOB
3% GND CE1# | GPIOT
;% GPIOD /1D _5D ID 5C{ GRIOL
b GPIOS GND
GPIOG GPIO12
A= GPIO13 GND
gmm;ig GPIO19 / MISO CE2# / GPIO16
GPIO26 MOSI / GPIO20
GND SCLK / GPI021

Pin 39 Pin 40

For more details about pin definition of GPIO, please refer to http://pinout.xyz/

PHYSICAL Numbering

Another way to refer to the pins is by simply counting across and down from pin 1 at the top left (nearest to
the SD card). This is 'Physical Numbering', as shown below:

s 00000 >»0000»D <000

0000 : 000000 >00P00 =

Raspberry Pi A+ / B+ and Raspberry Pi 2 physical pin numbers

(crio @Ground ()sav @sv (eEme

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
http://pinout.xyz/

< support@freenove.com www.freenove.com [l

WiringPi GPIO Numbering

Different from the previous two types of GPIO serial numbers, RPi GPIO serial number of the WiringPi are
numbered according to the BCM chip use in RPi.

wiringPi BCM BCM wiringPi
Pin GPIO Name Header Name GPIO Pin
— — 3.3v 1]2 5v — — =y
8 R1:0/R2:2 SDA 3|4 5v — — E-:,
9 R1:1/R2:3 SCL 5|6 Ov - -
7 4 GPIO7 7|8 14 15 - =
— — Ov 910 15 16 o J°
0 17 GPIOO = 11112 GPIO1 18 1 S oo
2 R1:21/R2:27 GPIO2 = 13|14 Ov — — -
3 22 GPIO3 = 15|16 GPlO4 23 4 = o
— — 3.3v 17118 GPIO5 24 5 o F
12 10 MOSI 1920 Ov — — -
13 9 MISO = 21|22 GPIO6 25 6 =
14 11 SCLK | 23|24 CEO 8 10 -
— — Ov | 25128 CEf 7 11 o
30 0 SDAO 27128 SCL.O 1 31 o+
21 5 GPIO.21 29|30 oV 1&
22 6 GPIO.22 31|32 GPIO26 12 26 0
23 13 GPIO.23 = 33|34 oV -
24 19 GPIO.24 35|36 GPIO27 16 27 ?
25 26 GPIO.25 37|38 GPIO.28 20 28 —

oV 39140 GPIO29 21 29 O

wirir?gPi BCM Name Header Name BCM wirir?gPi

Pin GPIO GPIO Pin

(For more details, please refer to https://projects.drogon.net/raspberry-pi/wiringpi/pins/)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/

You can also use the following command to view their correlation.
gpio readall

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Circuit

First, disconnect your RPi from the GPIO Extension Shield. Then build the circuit according to the circuit and
hardware diagrams. After the circuit is built and verified correct, connect the RPi to GPIO Extension Shield.
CAUTION: Avoid any possible short circuits (especially connecting 5V or GND, 3.3V and GND)!

WARNING: A short circuit can cause high current in your circuit, create excessive component heat and cause
permanent damage to your RPi!

Schematic diagram

PHYSICAL GPIO Numbering

BCM GPIO Numbering
The code uses this one.

3.3V 5V
—3{SDA1 TXDO }=&
—245CL1 RXDO }-10
—LAGPI04 GPIO18 12—
111GPIO17 GP1023}-16
, 31GPI027 GPI024}-18
2 {GPI022 GPI025}22
§ B 19 fmosi CEO 24—
21Imiso CE1{26. +
231scLk SCLO}28-
~2LISDAD GPI012}-32— | 1
i -291GPIO5 GPIO16 (30— o
¥ LEDI —31—‘GP|06 GPIO20 (38 |
331GPI013 GPI1021}40 | /
%GPIO& ,' ‘ /
GP1026 Raspberry Pi ! 2 1 2
GPIO Extension Shield ‘
GND i
L

Hardware connection. If you need any support, please contact us via: support@freenove.com

DSI (DISPLAY

& Il

Raspberry Pi GPIO Extension Shield

EEREERRRRRRERRRRRERRRRRRRRERERERERERRRRRE L

@ Note:

ETHERNET

Do NOT rotate Raspberry Pi to change the way of this connection.
Please plug T extension fully into breadboard.

Youtube video https://youtu.be/hGQtnxsrlL4
The connection of Raspberry Pi 400 and T extension board is as below. Don’t reverse the ribbon.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/hGQtnxsr1L4

D4 support@freenove.com

B www.freenove.com

\!

gu:gg EHEE JE
7ﬂ@7]JJJUL E b JE E)=
I G G A |
jLﬂTJJ@UDDDDD
& TTDGDDD{

C) e)

"j'? |
it

,‘

i

\ \\\\\\\\\\\ \

If you have a fan, you can connect it to 5V GND of breadboard via jumper wires.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

How to distinguish resistors?

There are only three kind of resistors in this kit.

The one with 1 red ring is 10KQ e Rl

The one with 2 red rings is 220Q Juny

The one with 0 red ring is 1KQ UL

Future hardware connection diagrams will only show that part of breadboard and GPIO Extension Shield.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Component knowledge

LED

An LED is a type of diode. All diodes only work if current is flowing in the correct direction and have two Poles.
An LED will only work (light up) if the longer pin (+) of LED is connected to the positive output from a power
source and the shorter pin is connected to the negative (-) output, which is also referred to as Ground (GND).
This type of component is known as “Polar” (think One-Way Street).

All common 2 lead diodes are the same in this respect. Diodes work only if the voltage of its positive electrode
is higher than its negative electrode and there is a narrow range of operating voltage for most all common
diodes of 1.9 and 3.4V. If you use much more than 3.3V the LED will be damaged and burnt out.

=4

/y LED Voltage Maximum current Recommended current

- 1 2 Red 1.9-22V 20mA 10mA

Green 29-34V 10mA 5mA

- - Blue 29-34V 10mA 5mA
-4 Volt ampere characteristics conform to diode

Note: LEDs cannot be directly connected to a power supply, which usually ends in a damaged component. A
resistor with a specified resistance value must be connected in series to the LED you plan to use.

Resistor

Resistors use Ohms (Q) as the unit of measurement of their resistance (R). 1IMQ=1000kQ, 1kQ=1000Q.

A resistor is a passive electrical component that limits or regulates the flow of current in an electronic circuit.
On the left, we see a physical representation of a resistor, and the right is the symbol used to represent the
presence of a resistor in a circuit diagram or schematic.

1

The bands of color on a resistor is a shorthand code used to identify its resistance value. For more details of
resistor color codes, please refer to the card in the kit package.

With a fixed voltage, there will be less current output with greater resistance added to the circuit. The
relationship between Current, Voltage and Resistance can be expressed by this formula: I=V/R known as
Ohm'’s Law where | = Current, V = Voltage and R = Resistance. Knowing the values of any two of these allows
you to solve the value of the third.

In the following diagram, the current through R1 is: I=U/R=5V/10kQ=0.0005A=0.5mA.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com www.freenove.com [l

WARNING: Never connect the two poles of a power supply with anything of low resistance value (i.e. a
metal object or bare wire) this is a Short and results in high current that may damage the power supply and
electronic components.

Note: Unlike LEDs and Diodes, Resistors have no poles and re non-polar (it does not matter which direction
you insert them into a circuit, it will work the same)

Breadboard

Here we have a small breadboard as an example of how the rows of holes (sockets) are electrically attached.
The left picture shows the ways the pins have shared electrical connection and the right picture shows the
actual internal metal, which connect these rows electrically.

GPIO Extension Board

GPIO board is a convenient way to connect the RPi I/O ports to the breadboard directly. The GPIO pin
sequence on Extension Board is identical to the GPIO pin sequence of RPi.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Raspberry Pi GPIO Extension Shield

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Code

According to the circuit, when the GPIO17 of RPi output level is high, the LED turns ON. Conversely, when the
GPIO17 RPi output level is low, the LED turns OFF. Therefore, we can let GPIO17 cycle output high and output
low level to make the LED blink. We will use both C code and Python code to achieve the target.

C Code 1.1.1 Blink

First, enter this command into the Terminal one line at a time. Then observe the results it brings on your
project, and learn about the code in detail.

If you want to execute it with editor, please refer to section Code Editor to configure.

If you have any concerns, please contact us via: support@freenove.com

It is recommended that to execute the code via command line.

1. If you did not update wiring pi, please execute following commands one by one.

sudo apt-get update

git clone https://github.com/WiringPi/WiringPi

cd WiringPi

J/build

2. Use cd command to enter 01.1.1_Blink directory of C code.

cd ~/Freenove Kit/Code/C_Code/01.1.1_Blink

3. Use the following command to compile the code “Blink.c” and generate executable file “Blink”.

of “lwiringPi” is low case of “L”.

gcc Blink.c -o Blink -IwiringPi

4. Then run the generated file “blink”.

sudo ./Blink

Now your LED should start blinking! CONGRATUALTIONS! You have successfully completed your first RPi
circuit!

5 O P

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://github.com/WiringPi/WiringPi

B www.freenove.com D4 support@freenove.com

You can also use the file browser. On the left of folder tree, right-click the folder you want to enter, and click
"Open in Terminal”.

01.1.1_Blink

File Edit View Sort Go Tools

| nR §§| (n] & /I /home/pi/Freenove_Kit/Code/C_Code/01.1.1_Blink

-

» [2]Downloads Name Size lodified
b []ESP32 £ Blinkc 966 bytes Saturday,
< || Freenove Kit = Blink 8.0KiB Wednesde
= [] Code | \E, Blinko 1.4 KiB Thursday,
v [|C_Code
b []00.0.0_Hello

— Open in New Window
<No subfolders= = : :
Open in Terminal
e P an a2 e

You can press “Ctrl+C” to end the program. The following is the program code:

#include <wiringPi.h>
#include <stdio. h>
#tdefine ledPin 0 //define the led pin number
void main(void)
{
printf ("Program is starting ... \n”);
wiringPiSetup(); //Initialize wiringPi.
pinMode (ledPin, OUTPUT) ;//Set the pin mode
printf ("Using pin%d\n”, %ledPin); //Output information on terminal
while (1) {
digitalWrite(ledPin, HIGH); //Make GPIO output HIGH level
printf (“led turned on >>>\n”); //Output information on terminal
delay (1000) ; //Wait for 1 second
digitalWrite(ledPin, LOW); //Make GPIO output LOW level
printf (“led turned off <<<\n”); //Output information on terminal
delay (1000) ; //Wait for 1 second
1
}

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com Il

In the code above, the configuration function for GPIO is shown below as:
void pinliode (int pin, int mode):
This sets the mode of a pin to either INPUT, OUTPUT, PWM_OUTPUT or GPIO_CLOCK. Note that only
wiringPi pin 1 (BCM_GPIO 18) supports PWM output and only wiringPi pin 7 (BCM_GPIO 4) supports CLOCK
output modes.

This function has no effect when in Sys mode. If you need to change the pin mode, then you can do it with
the gpio program in a script before you start your program

Writes the value HIGH or LOW (1 or 0) to the given pin, which must have been previously set as an output.

For more related wiringpi functions, please refer to http://wiringpi.com/reference/

GPIO connected to ledPin in the circuit is GPIO17 and GPIO17 is defined as 0 in the wiringPi numbering. So
ledPin should be defined as 0 pin. You can refer to the corresponding table in Chapter 0.
#tdefine 1ledPin 0 //define the led pin number
GPIO Numbering Relationship

BCM(Extension) Physical

BCM(Extension) | WingPi

3.3V
SDA1
SCL1
GPIO4
GND
GPIO17
GPI1O27
GP1022
3.3V
GPIO10/MOSI)
GPIO9/MOIS
GPIO11/SCLK
GND
GPIO0/SDAO
GPIOS
GPIO6
GPIO13
GPIO19
GPIO26
(€]\[p)

S5V
5V
GND
GPI014/TXDO
GPIO15/RXD0
GPIO18
GND
GP1023
GP1024
GND
GPI1025
GPIO8 /CEO
GPIO7 CE1
GPIO1 /SCLO
GND
GPIO12
GND
GPIO16
GPIO20
GP1021

In the main function main(), initialize wiringPi first.

After the wiringPi is initialized successfully, you can set the ledPin to output mode and then enter the while
loop, which is an endless loop (a while loop). That is, the program will always be executed in this cycle, unless
it is ended because of external factors. In this loop, use digitalWrite (ledPin, HIGH) to make ledPin output high
level, then LED turns ON. After a period of time delay, use digitalWrite(ledPin, LOW) to make ledPin output low

wiringPiSetup(); //Initialize wiringPi.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/reference/

B www.freenove.com D4 support@freenove.com

level, then LED turns OFF, which is followed by a delay. Repeat the loop, then LED will start blinking.

pinMode (1edPin, OUTPUT) ;//Set the pin mode

printf ("Using pin%d\n”, %ledPin) ; //Output information on terminal

while (1) {
digitalWrite(ledPin, HIGH); //Make GPIO output HIGH level
printf(“led turned on >>>\n”); //Output information on terminal
delay (1000) ; //Wait for 1 second
digitalWrite(ledPin, LOW); //Make GPTO output LOW level
printf ("led turned off <<{\n”); //Output information on terminal
delay (1000) ; //Wait for 1 second

}

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

Now, we will use Python language to make a LED blink.

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via:

1. Use cd command to enter 01.1.1_Blink directory of Python code.
cd ~/Freenove_Kit/Code/Python_Code/01.1.1_Blink

2. Use python command to execute python code blink.py.

python Blink.py

The LED starts blinking.

File Edit Tabs Help

L@raspberrypi cd Freenove_Kit/Code/Python_Code/81.1.1 Blink/
1 pberrypi s

You can press “Ctrl+C” to end the program. The following is the program code;

1 import RPi.GPIO as GPIO

2 import time

3

4 ledPin = 11 # define ledPin

5

(9 def setup():

7 GPI0. setmode (GPI0. BOARD) # use PHYSICAL GPIO Numbering

8 GPIO. setup(ledPin, GPIO.OUT) # set the ledPin to OUTPUT mode

9 GPIO. output (1edPin, GPIO.LOW) # make ledPin output LOW level

10 print (using pin%d %ledPin)

11

12 def loop():

13 while True:

14 GPIO0. output (1edPin, GPIO.HIGH) # make ledPin output HIGH level to turn on led
15 print (led turned on »>>’) # print information on terminal
16 time. sleep(1) # Wait for 1 second

17 GPIO. output (1edPin, GPIO.LOW) # make ledPin output LOW level to turn off led
18 print (led turned off <<<7)

19 time. sleep(1) # Wait for 1 second

20

21 def destroy():

22 GPIO. cleanup () # Release all GPIO

23

24 if name == main : # Program entrance

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

print (Program is starting ... \n’)

setup ()

try:
loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program
destroy ()

About RPi.GPIO:

This is a Python module to control the GPIO on a Raspberry Pi. It includes basic output function and input
function of GPIO, and functions used to generate PWM.

Sets the mode for pin serial number of GPIO.

mode=GPIO.BOARD, which represents the GPIO pin serial number based on physical location of RPi.
mode=GPIO.BCM, which represents the pin serial number based on CPU of BCM chip.

Sets pin to input mode or output mode, “pin” for the GPIO pin, “mode” for INPUT or OUTPUT.

Sets pin to output mode, “pin” for the GPIO pin, “mode” for HIGH (high level) or LOW (low level).
For more functions related to RPi.GPIO, please refer to:
https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/

“import time” time is a module of python.
https://docs.python.org/2/library/time.html?highlight=time%20time#module -time

In subfunction setup(), GPIO.setmode (GPIO.BOARD) is used to set the serial number for GPIO based on
physical location of the pin. GPIO17 uses pin 11 of the board, so define ledPin as 11 and set ledPin to output
mode (output low level).

ledPin = 11 # define ledPin

def setup():
GPIO0. setmode (GPTO. BOARD) # use PHYSICAL GPIO Numbering
GPIO. setup(ledPin, GPIO.OUT) # set the ledPin to OUTPUT mode
GPIO. output (l1edPin, GPIO.LOW) # make ledPin output LOW level
print (using pin%d %ledPin)

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Examples/
https://docs.python.org/2/library/time.html?highlight=time%20time#module-time

< support@freenove.com www.freenove.com [l

GPIO Numbering Relationship
WingPi BCM(Extension) Physical BCM(Extension) | WingPi
3.3V 5V 5V
SDA1 5V 5V
SCL1 GND GND
GPIO4 GP1014/TXD0O 15
GND GPIO15/RXDO0O 16
GPIO17 GPIO18
GPIO27 GND
GP1022 GP1023
3.3V GP1024
GP1010/MOSI) GND
GPIO9/MOIS GPI1025
GPIO11/SCLK GPIO8 /CEO
GND GPIO7 CE1
GPIO0/SDAO GPIO1 /SCLO
GPIO5 GND
GPIO6 GPIO12
GPIO13 GND
GPIO19 GPIO16
GPI1026 GPI1020
GND GP1021

In loop(), there is a while loop, which is an endless loop (a while loop). That is, the program will always be
executed in this loop, unless it is ended because of external factors. In this loop, set ledPin output high level,
then the LED turns ON. After a period of time delay, set ledPin output low level, then the LED turns OFF, which
is followed by a delay. Repeat the loop, then LED will start blinking.
def loop():
while True:
GPIO. output (1edPin, GPIO.HIGH) # make ledPin output HIGH level to turn on led

print (led turned on >>>") # print information on terminal

time. sleep (1) # Wait for 1 second

GPIO. output (1edPin, GPIO.LOW) # make ledPin output LOW level to turn off led
print (led turned off <<<7)

time. sleep(1) # Wait for 1 second

Finally, when the program is terminated, subfunction (a function within the file) will be executed, the LED will
be turned off and then the IO port will be released. If you close the program Terminal directly, the program
will also be terminated but the finish() function will not be executed. Therefore, the GPIO resources will not
be released which may cause a warning message to appear the next time you use GPIO. Therefore, do not
get into the habit of closing Terminal directly.

def finish():
GPIO. cleanup() # Release all GPIO

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

If you want to use other editor to edit and execute the code, you can learn them in this section.

Use the nano editor to open the file "Hello.c", then press " Ctrl+X " to exit.
nano Hello.c

As is shown below:

File Edit Tabs Help
GNU nmano 2.7.4 File: Hello.c

Hinclude <stdio.h>

main(){
printf{"hello, world!“n");

1:

Use the following command to compile the code to generate the executable file “Hello”.

gcc Hello.c -o Hello
Use the following command to run the executable file “Hello”.

sudo ./Hello
After the execution, "Hello, World!" is printed out in terminal.

pif@raspberrypi:

pifiraspberrypi:

ne J, WOTr Lo

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

geany
Next, learn to use the Geany editor. Use the following command to open the Geany in the sample file
"Hello.c" file directory path.

Or find and open Geany directly in the desktop main menu, and then click File>Open to open the
"Hello.c”, Or drag "Hello.c" to Geany directly.

‘ @ EI E * @ [;@![pl@raspberrypl ~[FT... H [0
. Arduino IDE

4 BlueJ Java IDE

eany Programmer's Editor

'i Greenfoot Java IDE

* Mathematica
Node-RED

==
il
o
=1
=
=]
=
9]
7]
~

Hello.c - /home/pi/Freenove_Kit/Code/C_Code/00.0.0_Hello - Geany

File Edit Search View Document Project Build Tools Help

M A [il]]
O -8-488 @x ¢«-> 8@~ H | 4|0 || 1% B
:J Symbols IL lHeIIo_c % I
~ ¢ Functions ;. #include <stdio.h> -
¢ main [3] 3 @int main(){
4 ——printf("hello, world!\n");
5 —
6 ~return 1;
-}
-
4 »
A 16:16:29: This is Geany 1.33.
Statys 16:16:29: setting Tabs indentation mode for /home/pi/Freenove Kit/Code/C_Code/00.6.0_Hello/Hello.c.
16:16:29: Setting Tabs indentation mode for /home/pi/Freenove Kit/Code/C_Code/00.0.8_Hello/Hello.c.
q 16:16:29: File /home/pi/Freenove_Kit/Code/C_Code/08.0.0_Hello/Hello.c opened(1).
Compiler B - - - penelt)

-

line:7/7 col:1 sel:0 INS TAB mode:CRLF encoding: UTF-8 filetype:C scope: main

If you want to create a new code, click File=>New=>File=>Save as (name.c or name.py). Then write the code.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

Generate an executable file by clicking menu bar Build->Build, then execute the generated file by clicking

menu bar Build->Execute.

Build Tools Help
%3 Compile

<

Make

Make Custom Target...

Make Object

= Next Error
Previous Error

#% Execute

% Set Build Commmands

Shift+F9
Shift+Ctrl+F9
Shift+F8

Build Tools Help
%3 Compile

® Build

Make

Make Custom Target. .

Make Object

% Next Error
Previous Error

o
e
Al

¥ Set Build Commands

Shift+F9
Shift+Ctrl+F9
Shift+F8

After the execution, a new terminal window will output the characters “Hello, World!”, as shown below:

File Edit Tabs Help
hello, world

return To cCcontinue

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

You can click Build->Set Build Commands to set compiler commands. In later projects, we will use various
compiler command options. If you choose to use Geany, you will need change the compiler command here.
As is shown below:

Set Build Commands

Label Command Working directory ~ Reset
C commands
1. _ ”t—:ompile gec -Wall -c "%f" -lwiringPi | g
2. Build gcc -Wall -0 "%e" "%f" -lwiringPi | o
3. Lint cppcheck --language=c --enable=y| | g

Error regular expression: o
Independent commands
1. Make make 2
2. Make Custom Target... | mgzke &
3. Make Object make %e.0 2
4 &

Error regular expression: Pid
Note: Item 2 opens a dialogue and appends the response to the command.
Execute commands
1. I Execu-t;e | " e ‘ | | g
2 | | 2
%d %e, %f, %p, %l are substituted in command and directory fields, see manual for details.

Cancel OK

Here we have identified three code editors: vi, nano and Geany. There are also many other good code editors
available to you, and you can choose whichever you prefer to use.

In later projects, we will only use terminal to execute the project code. This way will not modify the code by
mistake.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Freenove Car, Robot and other products for Raspberry Pi

We also have car and robot kits for Raspberry Pi. You can visit our website for details.

https://www.amazon.com/freenove

FNKO0043 Freenove 4WD Smart Car Kit for Raspberry Pi

https://www.youtube.com/watch?v=42v0GZUQjZc
FNKO0050 Freenove Robot Dog Kit for Raspberry Pi

T https://www.youtube.com/watch?v=7BmIZ8 R9d4

FNK0052 Freenove_Big_Hexapod_Robot_Kit_for Raspberry_Pi
https://youtu.be/Lvghn]2DNZ0

Functions é -~ .‘:
; i .

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://www.amazon.com/freenove
https://www.youtube.com/watch?v=4Zv0GZUQjZc
https://www.youtube.com/watch?v=7BmIZ8_R9d4
https://youtu.be/LvghnJ2DNZ0

< support@freenove.com

www.freenove.com Il

Chapter 2 Buttons & LEDs

Usually, there are three essential parts in a complete automatic control device: INPUT, OUTPUT, and CONTROL.
In last section, the LED module was the output part and RPI was the control part. In practical applications, we
not only make LEDs flash, but also make a device sense the surrounding environment, receive instructions
and then take the appropriate action such as turn on LEDs, make a buzzer beep and so on.

Next, we will build a simple control system to control an LED through a push button switch.

Project 2.1 Push Button Switch & LED

In the project, we will control the LED state through a Push Button Switch. When the button is pressed, our
LED will turn ON, and when it is released, the LED will turn OFF. This describes a Momentary Switch.

Component List

Raspberry Pi (with 40 GPIO) x1
GPIO Extension Board & Wire x1
Breadboard x1

Jumper Wire

—- -

LED x1

Resistor 220Q
x1

Resistor 10kQ
X2

Push
Button
Switch x1

Please Note: In the code “button” represents switch action.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Component knowledge

Push Button Switch

This type of Push Button Switch has 4 pins (2 Pole Switch). Two pins on the left are connected, and both left
and right sides are the same per the illustration:

1 2 1]/[2
1.2 1 2
When the button on the switch is pressed, the circuit is completed (your project is Powered ON).

Circuit

Schematic diagram

3.3V 5V
J-_S_ 28611 &Bg 8 R3 is used to limit current
—a 85:8‘1‘ 85{8;2 g to protect GPIO 18, if you
7 R3 i
13 gPI827 8P|824 e 0 set it to output HIGH level
151GpI022 PI025|22— .
R0 19 1mos| CE0 24— \ bv mistake.
2L1Imiso CE1}26 !
231scLK SCLO 28~ .
-2L1SDAD GPIO12|-32—
v 29.1GPI05 GPI016 |36~
¥ -311GPIO6 GPI1020|38—
331GPI013 GPI021 40
351GPI019
GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via:support@freenove.com

e e o o
e e e o
e e e o o
e e e o0
e e 0 o 0
e e oo
LI)
e e 0 0 e
e e e o
e e o o
e e e o0 0
e e 0 0 o
e e e o
e e e 0o
e e o 0

Raspberry Pi GPIO Extension Shield

There are two kinds of push button switch in this kit.
The smaller push button switches are contained in a plastic bag.
Youtube video: https://youtu.be/ 5geld6flnM

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/_5ge1d6f1nM

m < support@freenove.com www.freenove.com [l

This is how it works.
When button switch is released:

Raspberry Pi GPIO Extension Shield

When button switch is pressed:

. o

Raspberry Pi GPIO Extension Shield

Code

This project is designed for learning how to use Push Button Switch to control an LED. We first need to read
the state of switch, and then determine whether to turn the LED ON in accordance to the state of the switch.

C Code 2.1.1 ButtonLED

First, observe the project result, then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 02.1.1_ButtonLED directory of C code.

cd ~/Freenove Kit/Code/C_Code/02.1.1_ButtonLED

2. Use the following command to compile the code “ButtonLED.c” and generate executable file “ButtonLED”
gcc ButtonLED.c -o ButtonLED -lwiringPi

3. Then run the generated file “ButtonLED".

sudo ./ButtonLED

Later, the terminal window continues to print out the characters “led off--". Press the button, then LED is
turned on and then terminal window prints out the "led on--". Release the button, then LED is turned off and
then terminal window prints out the "led off--". You can press "Ctrl+C" to terminate the program.

The following is the program code:

B :inciude <wiringPi.h>

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

#include <stdio. h>

#define ledPin 0 //define the ledPin
#define buttonPin 1 //define the buttonPin

void main(void)
{

printf ("Program is starting ... \n”);

wiringPiSetup(); //Initialize wiringPi.

pinMode (ledPin, OUTPUT); //Set ledPin to output
pinMode (buttonPin, INPUT);//Set buttonPin to input

pul1UpDnControl (buttonPin, PUD UP); //pull up to HIGH level
while (1) {
if(digitalRead (buttonPin) == LOW){ //button is pressed
digitalWrite(ledPin, HIGH); //Make GPIO output HIGH level

printf ("Button is pressed, led turned on >>>\n”); //Output information on
terminal
1
else { //button is released
digitalWrite(ledPin, LOW); //Make GPIO output LOW level
printf ("Button is released, led turned off <<\n”); //Output information on
terminal

In the circuit connection, LED and Button are connected with GPIO17 and GPIO18 respectively, which
correspond to 0 and 1 respectively in wiringPl. So define ledPin and buttonPin as 0 and 1 respectively.

#tdefine ledPin 0 //define the ledPin
#tdefine buttonPin 1 //define the buttonPin
In the while loop of main function, use digitalRead(buttonPin) to determine the state of Button. When the

button is pressed, the function returns low level, the result of “if" is true, and then turn on LED. Or, turn off
LED.

if (digitalRead (buttonPin) == LOW) { //button has pressed down
digitalWrite (1edPin, HIGH); //led on
printf("led on...\n");
}
else { //button has released
digitalWrite (1edPin, LOW); //led off
printf (", .. led off\n”);

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

)

Reference:

This function returns the value read at the given pin. It will be “HIGH” or “LOW"(1 or 0) depending on the
logic level at the pin.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Python Code 2.1.1 ButtonLED

First, observe the project result, then learn about the code in detail. Remember in code “button” = switch
function

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 02.1.1_ButtonLED directory of Python code.

2. Use Python command to execute btnLED.py.
pythonButonLEDpy
Then the Terminal window continues to show the characters “led off--", press the switch button and the LED
turns ON and then Terminal window shows "led on--". Release the button, then LED turns OFF and then the
terminal window text "led off--" appears. You can press "Ctrl+C" at any time to terminate the program.
The following is the program code:

import RPi.GPIO as GPIO

ledPin = 11 # define ledPin
buttonPin = 12 # define buttonPin

def setup():

GPIO. setmode (GPIO0. BOARD) # use PHYSICAL GPIO Numbering

GPIO. setup(ledPin, GPIO.OUT) # set ledPin to OUTPUT mode

GPIO. setup (buttonPin, GPIO.IN, pull up down=GPIO.PUD UP) # set buttonPin to PULL UP
INPUT mode

def loop():
while True:

if GPIO. input (buttonPin)==GPIO.LOW: # if button is pressed
GPIO. output (ledPin, GPI0.HIGH) # turn on led
print (led turned on >>>") # print information on terminal

else : # if button is relessed
GPIO. output (1edPin, GPI0.LOW) # turn off led
print (led turned off <<<)

def destroy():

GPIO. cleanup () # Release GPIO resource
if name == main : # Program entrance
print (Program is starting...’)
setup()
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

In subfunction setup (), GPIO.setmode (GPIO.BOARD) is used to set the serial number of the GPIO, which is
based on physical location of the pin. Therefore, GPIO17 and GPIO18 correspond to pinll and pinl2
respectively in the circuit. Then set ledPin to output mode, buttonPin to input mode with a pull resistor.
ledPin = 11 # define ledPin
buttonPin = 12 # define buttonPin

def setup():

GPIO. setmode (GPTO. BOARD) # use PHYSICAL GPIO Numbering

GPIO. setup(ledPin, GPIO.OUT) # set ledPin to OUTPUT mode

GPIO. setup(buttonPin, GPIO.IN, pull up_down=GPIO. PUD UP) # set buttonPin to PULL UP
INPUT mode

The loop continues endlessly to judge whether the key is pressed. When the button is pressed, the
GPIO.input(buttonPin) will return low level, then the result of “if” is true, ledPin outputs high level, LED is turned
on. Otherwise, LED will be turned off.
def loop():
while True:
if GPIO. input (buttonPin)==GPI0.LOW: # if button is pressed
GPIO. output (1edPin, GPTIO. HIGH) # turn on led

print (led turned on »>>’) # print information on terminal

else : # if button is released
GPIO. output (1edPin, GPTO. LOW) # turn off led
print (led turned off <<<)

Execute the function destroy (), close the program and release the occupied GPIO pins.

About function GPIO.input ():

This function returns the value read at the given pin. It will be “HIGH” or “LOW"(1 or 0) depending on the
logic level at the pin.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Project 2.2 MINI Table Lamp

We will also use a Push Button Switch, LED and RPi to make a MINI Table Lamp but this will function differently:
Press the button, the LED will turn ON, and pressing the button again, the LED turns OFF. The ON switch
action is no longer momentary (like a door bell) but remains ON without needing to continually press on the
Button Switch.

First, let us learn something about the push button switch.

Debounce a Push Button Switch

When a Momentary Push Button Switch is pressed, it will not change from one state to another state
immediately. Due to tiny mechanical vibrations, there will be a short period of continuous buffeting before it
stabilizes in a new state too fast for Humans to detect but not for computer microcontrollers. The same is true
when the push button switch is released. This unwanted phenomenon is known as “bounce”.

press | sltable rellease| stable
U
U |
| |
Ideal state I }
| | N
u | | t
™o |
| |
Virtual state | | ‘
| N
| 7
|

Therefore, if we can directly detect the state of the Push Button Switch, there are multiple pressing and
releasing actions in one pressing cycle. This buffeting will mislead the high-speed operation of the
microcontroller to cause many false decisions. Therefore, we need to eliminate the impact of buffeting. Our
solution: to judge the state of the button multiple times. Only when the button state is stable (consistent) over
a period of time, can it indicate that the button is actually in the ON state (being pressed).

This project needs the same components and circuits as we used in the previous section.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m D4 support@freenove.com

www.freenove.com Il

Code

In this project, we still detect the state of Push Button Switch to control an LED. Here we need to define a
variable to define the state of LED. When the button switch is pressed once, the state of LED will be changed
once. This will allow the circuit to act as a virtual table lamp.

C Code 2.2.1 Tablelamp
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 02.2.1_Tablelamp directory of C code.

2. Use the following command to compile “Tablelamp.c” and generate executable file “Tablelamp”.

3. Tablelamp: Then run the generated file “Tablelamp”.

When the program is executed, press the Button Switch once, the LED turns ON. Pressing the Button Switch
again turns the LED OFF.

#include <wiringPi.h>
#include <stdio.h>

#tdefine ledPin 0 //define the ledPin

#define buttonPin 1 //define the buttonPin

int ledState=LOW; //store the State of led

int buttonState=HIGH; //store the State of button

int lastbuttonState=HIGH;//store the lastState of button

long lastChangeTime; //store the change time of button state
long captureTime=50; //set the stable time for button state

int reading;
int main(void)
{

printf ("Program is starting...\n”);
wiringPiSetup(); //Initialize wiringPi.

pinMode (ledPin, OUTPUT); //Set ledPin to output
pinMode (buttonPin, INPUT); //Set buttonPin to input

pullUpDnControl (buttonPin, PUD UP); //pull up to high level
while (1) {
reading = digitalRead (buttonPin); //read the current state of button

if(reading != lastbuttonState) { //if the button state has changed, record the time
point

lastChangeTime = millis();

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

//if changing-state of the button last beyond the time we set, we consider that
//the current button state is an effective change rather than a buffeting
if(millis() — lastChangeTime > captureTime) {
//if button state is changed, update the data
if(reading != buttonState) {
buttonState = reading;
//if the state is low, it means the action is pressing
if (buttonState == LOW) {
printf ("Button is pressed!\n”);
ledState = !ledState; //Reverse the LED state
if(ledState) {
printf (“turn on LED ...\n”);
}
else {

printf (“turn off LED ...\n”);

1
//if the state is high, it means the action is releasing
else {

printf ("Button is released!\n”);

1
digitalWrite(ledPin, ledState) ;
lastbuttonState = reading;

return 0;

This code focuses on eliminating the buffeting (bounce) of the button switch. We define several variables to
define the state of LED and button switch. Then read the button switch state constantly in while () to determine
whether the state has changed. If it has, then this time point is recorded.

reading = digitalRead(buttonPin); //read the current state of button
if(reading != lastbuttonState) {
lastChangeTime = millis();

This returns a number representing the number of milliseconds since your program called one of the
wiringPiSetup functions. It returns to an unsigned 32-bit number value after 49 days because it
“wraps” around and restarts to value 0.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m < support@freenove.com www.freenove.com [l

Then according to the recorded time point, evaluate the duration of the button switch state change. If the
duration exceeds captureTime (buffeting time) we have set, it indicates that the state of the button switch has
changed. During that time, the while () is still detecting the state of the button switch, so if there is a change,
the time point of change will be updated. Then the duration will be evaluated again until the duration is
determined to be a stable state because it exceeds the time value we set.

if(millis() — lastChangeTime > captureTime) {
//if button state is changed, update the data.
if (reading != buttonState) {
buttonState = reading;

Finally, we need to judge the state of Button Switch. If it is low level, the changing state indicates that the

button Switch has been pressed, if the state is high level, then the button has been released. Here, we change

the status of the LED variable, and then update the state of the LED.
if (buttonState == LOW) {

printf ("Button is pressed!\n”);
ledState = !ledState; //Reverse the LED state
if (ledState) {
printf (“turn on LED ... \n”);
}
else {

printf (“turn off LED ...\n”);

}
//if the state is high, it means the action is releasing
else {

printf ("Button is released!\n”);

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com m

Python Code 2.2.1 Tablelamp

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 02.2.1_Tablelamp directory of Python code

2. Use python command to execute python code “Tablelamp.py”.

When the program is executed, pressing the Button Switch once turns the LED ON. Pressing the Button Switch
again turns the LED OFF.
import RPi.GPIO as GPIO

ledPin = 11 # define ledPin
buttonPin = 12 # define buttonPin
ledState = False

def setup():

GPI0. setmode (GPT0. BOARD) # use PHYSICAL GPIO Numbering

GPIO. setup(ledPin, GPIO.OUT) # set ledPin to OUTPUT mode

GPI0. setup (buttonPin, GPIO.IN, pull up down=GPIO.PUD UP) # set buttonPin to PULL UP
INPUT mode

def buttonEvent (channel): # When button is pressed, this function will be executed
global ledState
print (buttonEvent GPI0%d %channel)
ledState = not ledState
if ledState :
print (Led turned on >>>")
else :
print (' Led turned off <<<)
GPIO0. output (1edPin, ledState)

def loop():
#Button detect
GPIO0. add_event_detect (buttonPin, GPI0. FALLING, callback = buttonEvent, bouncetime=300)
while True:

pass

def destroy():

GPI0. cleanup () # Release GPIO resource
if name == main : # Program entrance

print (Program is starting...’)

setup()

try:

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Loop ()
except KeyboardInterrupt: # Press ctrl-c¢ to end the program.

destroy ()

RPi.GPIO provides us with a simple but effective function to eliminate “jitter”, that is GPIO.add_event_detect().
It uses the callback function. Once it detects that the buttonPin has a specified action FALLING, it executes a
specified function buttonEvent(). In the function buttonEvent, each time the ledState is reversed, the state of
the LED will be updated.
def buttonEvent (channel): # When button is pressed, this function will be executed

global ledState

print (buttonEvent GPI0%d %channel)

ledState = not ledState

if ledState :

print (Led turned on >>>")

else :
print (Led turned off <<<7)
GPIO. output (ledPin, ledState)

def loop():
#Button detect
GPIO0. add_event_detect (buttonPin, GPI0. FALLING, callback = buttonEvent, bouncetime=300)
while True:

pass

Of course, you can also use the same programming idea in C code above to achieve this target.

This is an event detection function. The first parameter specifies the IO port to be detected. The second
parameter specifies the action to be detected. The third parameter specifies a function name; the function
will be executed when the specified action is detected. The fourth parameter is used to set the jitter time.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Chapter 3 LED Bar Graph

We have learned how to control one LED to blink. Next, we will learn how to control a number of LEDs.

Project 3.1 Flowing Water Light

In this project, we use a number of LEDs to make a flowing water light.

Component List

Raspberry Pi (with 40 GPIO) x1 Bar Graph LED x1 Resistor 220Q x10
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

Jumper Wire x 1

—- -

Component knowledge

Let us learn about the basic features of these components to use and understand them better.

Bar Graph LED

A Bar Graph LED has 10 LEDs integrated into one compact component. The two rows of pins at its bottom
are paired to identify each LED like the single LED used earlier.

1 20 1—|>|320
2 19 219
3 18 318
4 17 417
5 16 5 ¥ 16
6 15 6 > 15
7 14 7> 14
8 13 8 13
9 12 9 12
10 11 10-F 11

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com Il

Circuit

A reference system of labels is used in the circuit diagram below. Pins with the same network label are
connected together.

Schematic diagram

0 P 33V 5V
SDAT TXDO |8~

2200 o [scL1 > SCL1 RXDO |10
—L1GPI04 GPIO18}-12 GPIOTg

2200 5 2o GPIO17 GPIO17 GPI023 16 GPI023
GPI027 GPI1027 GP1024 ;g GPI024]

220Q /o GP1022 GP1022 GP1025 GPI1029
—3Mos! CEQ 24 —cm

2200 o Jx e Ll 26
231SCLK SCLof28—

2200 . /o -2L1SDAD GPIO12}-22~
-291GPIO5 GPI016 |26~

200 o S, -311GPI06 GPI020}-38
-331GPI013 GPI1021 40

2200 o 2o j-S-:GPIO19

i GP1026 Raspberry Pi

200 o S GPIO Extension Shield

5 SCL GND

2200 (0 S, 4 i

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

- . . ° e o 0o 0 o 0 0
- o 0 . . e o o o 0 0 0
= ©

B &

- = e e 0 © . oo e e 00000000 .. ® o 006000000000 000 0000
- o e 0 0 0 e 0o LI e o 0 0 o f © 6 68 ¢ 0 0000000000000 00 00000
|- [LI I I I IXXY 2080 BT Eh * f lcc.o.ooc-ano-o..oo--oooooo
- = S>SacokamMTanor-rocaNAavo - ﬁ

- (] hihzoAocZzNNZNHWIS S =AN . . ® © 6 8 6 6 000 000000000000 00 000
- °* X< O [=)X=] VLY [eX=Xe=]

i > OE2Z=0O=S=0 O SU S == ° . ® ®® 000000 00000000000
i w a oo oo o

- o o Vo (AR

|- = NS o oo

- 0 <+ oSN -

—) MESQQQQQMU, "HHQQQ . ® © 0 0 00 0 00 00 00 0000 e o
- — >Quﬂ-zn-n-a->° oo Z ® © 9 9 9 9 9 0 9 9 O 00 O 0 0 0 O 0O O O O OO OO SO O SO
- K3 MLOLLVVLLVUM= [CATIT}

- L EEXEXEE R R X e ® ® 9 9 9 9 006 0000 e 000G SOGESTOS TGOS
- E‘ o e e 0o 0 e o o 0 ®© © o 00 0 0 0 0 00 0 0 00 e 0 0 e e
- g o LI . 3fisilie © 9 9 0 0 0 0 e e e e e e e e e
- Q

- (7]

- 3]

- o e e s 0 L I e e e 0
- °

If LEDbar doesn’t work, rotate LEDbar 180° to try. The label is random.

Youtube video: https://youtu.be/3rh-b05VoiU

In this circuit, the cathodes of the LEDs are connected to the GPIO, which is different from the previous circuit.
The LEDs turn ON when the GPIO output is low level in the program.

Code

This project is designed to make a flowing water lamp, which are these actions: First turn LED #1 ON, then

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/3rh-b05VoiU

B www.freenove.com D4 support@freenove.com

turn it OFF. Then turn LED #2 ON, and then turn it OFF... and repeat the same to all 10 LEDs until the last LED
is turns OFF. This process is repeated to achieve the “movements” of flowing water.

C Code 3.1.1 LightWater

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 03.1.1_LightWater directory of C code.

2. Use the following command to compile “LightWater.c” and generate executable file “LightWater”.

3. Then run the generated file “LightWater".

After the program is executed, you will see that Bar Graph LED starts with the flowing water pattern flashing
from left to right and then back from right to left.
The following is the program code:

#include <wiringPi.h>
#include <stdio.h>

fidefine ledCounts 10
int pins[ledCounts] = {0,1,2,3,4,5,6,8,9, 10} ;

void main(void)
{
int 1;

printf ("Program is starting ... \n”);

wiringPiSetup(); //Initialize wiringPi.

for (i=0; i<ledCounts;i++) { //Set pinMode for all led pins to output
pinMode (pins[i], OUTPUT):
1
while (1) {
for (i=0;i<ledCounts;i++){ // move led(on) from left to right
digitalWrite(pins[i], LOW);
delay (100) ;
digitalWrite(pins[i], HIGH) ;
}
for (i=ledCounts—1;i>-1;i—){ // move led(on) from right to left
digitalWrite(pins[i], LOW);
delay (100) ;
digitalWrite (pins[i], HIGH) ;

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com www.freenove.com [l

In the program, configure the GPIO0-GPIO9 to output mode. Then, in the endless “while” loop of main
function, use two “for” loop to realize flowing water light from left to right and from right to left.
while (1) {
for (i=0;i<ledCounts;i++){ // move led(on) from left to right
digitalWrite (pins[i], LOW) ;
delay (100) ;
digitalWrite(pins[i], HIGH) ;

}

for (i=ledCounts—1;i>-1;i—){ // move led(on) from right to left
digitalWrite(pins[i], LOW);
delay (100) ;
digitalWrite(pins[i], HIGH) ;

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Python Code 3.1.1 LightWater

First observe the project result, and then view the code.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 03.1.1_LightWater directory of Python code.
cd ~/Freenove_Kit/Code/Python_Code/03.1.1_LightWater
2. Use Python command to execute Python code “LightWater.py”.
python LightWater.py
After the program is executed, you will see that LED Bar Graph starts with the flowing water way to be turned
on from left to right, and then from right to left.
The following is the program code:

import RPi.GPIO as GPIO

import time

ledPins = [11, 12, 13, 15, 16, 18, 22, 3, 5, 24]

def setup():
GPIO. setmode (GPT0. BOARD) # use Physical GPIO Numbering
GPIO. setup(ledPins, GPIO.OUT) # set all ledPins to OUTPUT mode
GPIO. output (1edPins, GPIO.HIGH) # make all ledPins output HIGH level, turn off all led

def loop():
while True:

for pin in ledPins: # make led(on) move from left to right
GPI0. output (pin, GPIO.LOW)
time. sleep(0. 1)
GPIO. output (pin, GPIO.HIGH)

for pin in ledPins[::-1]: # make led(on) move from right to left
GPIO. output (pin, GPIO.LOW)
time. sleep(0. 1)
GPIO. output (pin, GPIO.HIGH)

def destroy():

GPIO. cleanup() # Release all GPIO
if name == main : # Program entrance
print (Program is starting...’)
setup ()
try:
Loop()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

In the program, first define 10 pins connected to LED, and set them to output mode in subfunction setup().
Then in the loop() function, use two “for” loops to realize flowing water light from right to left and from left
to right. ledPins[::-1] is used to get elements of ledPins in reverse order.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

def loop():
while True:

for pin in ledPins: ftmake led on from left to right
GPIO. output (pin, GPIO. LOW)
time. sleep (0. 1)
GPI0. output (pin, GPI0. HIGH)

for pin in ledPins[::-1]: ttmake led on from right to left
GPIO0. output (pin, GPIO. LOW)
time. sleep (0. 1)
GPI0. output (pin, GPI0. HIGH)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Chapter 4 Analog & PWM

In previous chapters, we learned that a Push Button Switch has two states: Pressed (ON) and Released (OFF),
and an LED has a Light ON and OFF state. Is there a middle or intermediated state? We will next learn how to
create an intermediate output state to achieve a partially bright (dim) LED.

First, let us learn how to control the brightness of an LED.

Project 4.1 Breathing LED

We describe this project as a Breathing Light. This means that an LED that is OFF will then turn ON gradually
and then gradually turn OFF like "breathing". Okay, so how do we control the brightness of an LED to create
a Breathing Light? We will use PWM to achieve this goal.

Component List

Raspberry Pi (with 40 GPIO) x1 LED x1 Resistor 220Q x1
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

Jumper Wire

—a. 4

Component Knowledge

Analog & Digital

An Analog Signal is a continuous signal in both time and value. On the contrary, a Digital Signal or discrete-
time signal is a time series consisting of a sequence of quantities. Most signals in life are analog signals. A
familiar example of an Analog Signal would be how the temperature throughout the day is continuously
changing and could not suddenly change instantaneously from 0°C to 10°C. However, Digital Signals can
instantaneously change in value. This change is expressed in numbers as 1 and 0 (the basis of binary code).
Their differences can more easily be seen when compared when graphed as below.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com www.freenove.com Il

ANALOG DIGITAL

> >
t t

Note that the Analog signals are curved waves and the Digital signals are “Square Waves”.

In practical applications, we often use binary as the digital signal, that is a series of 0's and 1's. Since a binary
signal only has two values (0 or 1) it has great stability and reliability. Lastly, both analog and digital signals
can be converted into the other.

PWM

PWM, Pulse-Width Modulation, is a very effective method for using digital signals to control analog circuits.
Digital processors cannot directly output analog signals. PWM technology makes it very convenient to achieve
this conversion (translation of digital to analog signals).

PWM technology uses digital pins to send certain frequencies of square waves, that is, the output of high
levels and low levels, which alternately last for a while. The total time for each set of high levels and low levels
is generally fixed, which is called the period (Note: the reciprocal of the period is frequency). The time of high
level outputs are generally called “pulse width”, and the duty cycle is the percentage of the ratio of pulse
duration, or pulse width (PW) to the total period (T) of the waveform. The longer the output of high levels last,
the longer the duty cycle and the higher the corresponding voltage in the analog signal will be. The following
figures show how the analog signal voltages vary between 0V-5V (high level is 5V) corresponding to the pulse
width 0%-100%:

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D<l support@freenove.com

ANALOG
AU DIGITAL
5V
0% Duty Cycle
0 > .
AU
5V
25% Duty Cycle hl —‘ 1
0 > .
MU pursee"\ﬁ?dm
5V
50% Duty Cycle T H _‘ |>
0 > t
MNU
5v
75% Duty Cycle '
0 > t
AU
5V —
100% Duty Cycle
0 >

t

The longer the PWM duty cycle is, the higher the output power will be. Now that we understand this
relationship, we can use PWM to control the brightness of an LED or the speed of DC motor and so on.

It is evident, from the above, that PWM is not actually analog but the effective value of voltage is equivalent
to the corresponding analog value. Therefore, by using PWM, we can control the output power of to an LED
and control other devices and modules to achieve multiple effects and actions.

In RPi, GPIO18 pin has the ability to output to hardware via PWM with a 10-bit accuracy. This means that 100%
of the pulse width can be divided into 2°=1024 equal parts.

The wiringPi library of C provides both a hardware PWM and a software PWM method, while the wiringPi
library of Python does not provide a hardware PWM method. There is only a software PWM option for Python.

The hardware PWM only needs to be configured, does not require CPU resources and is more precise in time
control. The software PWM requires the CPU to work continuously by using code to output high level and

low level. This part of the code is carried out by multi-threading, and the accuracy is relatively not high enough.

In order to keep the results running consistently, we will use PWM.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m < support@freenove.com www.freenove.com [l

Circuit
Schematic diagram Hardware connection. If you need any support, please
| | o feel free to contact us via: support@freenove.com
33V 5V
—3.1sDA1 TXDO}-8
—2{sCL1 RXD0 {12 : g
—L1GPI04 GPIO18}12 = B
1iGpI017 GPI023 |16 & 5
31GPI027 GPI024 18 = 5
2 1GPI022 GPI025 |22 =
9.Imos| CEO}-24— E| <
-21IMISO CE1{28 - B
~231SCLK SCLO}-28— e =
-2LASpAO GPIO12 |32~ e ©
-291GpI05 GPIO16 |36~ =
-311GPI06 GPI020 {38 Vi e 5
-33.1Gp1013 GPIO21 0. ¥ ¥ =
-221GPI019 - E .
GPI026 Raspberry Pi - ~
GPIO Extension Shield
GND %m
220Q
Youtube video: https://youtu.be/rYxykuVgYtA

Code

This project uses the PWM output from the GPIO18 pin to make the pulse width gradually increase from 0%
to 100% and then gradually decrease from 100% to 0% to make the LED glow brighter then dimmer.

C Code 4.1.1 BreathingLED

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 04.1.1_BreathingLED directory of C code.

cd ~/Freenove_Kit/Code/C_Code/04.1.1_BreathingLED

2. Use following command to compile “BreathingLED.c” and generate executable file “BreathingLED”.
gcc BreathingLED.c -o BreathingLED -IwiringPi

3. Then run the generated file “BreathingLED"

sudo ./BreathingLED

After the program is executed, you'll see that LED is turned from on to off and then from off to on gradually
like breathing.

The following is the program code:

#include <wiringPi.h>
#include <stdio. h>
#include <softPwm. h>
#define ledPin 1
void main(void)

{

S O1 = W DN o~

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/rYxykuVgYtA

B www.freenove.com D4 support@freenove.com

int 1;

printf ("Program is starting ... \n”);

wiringPiSetup(); //Initialize wiringPi.

softPwmCreate (ledPin, 0, 100)://Creat SoftPWM pin

while (1) {

for (i=0;i<100;i++) { //make the led brighter
softPwmWrite (ledPin, 1i):
delay (20) ;

}

delay (300) ;

for (i=100;i>=0;i—) { //make the led darker
softPwmWrite (ledPin, 1i);
delay(20) ;

1

delay (300) :

}
First, create a software PWM pin.
softPwmCreate (1edPin, 0, 100);//Creat SoftPWM pin
There are two “for” loops in the next endless “while” loop. The first loop outputs a power signal to the ledPin
PWM from 0% to 100% and the second loop outputs a power signal to the ledPin PWM from 100% to O%.
while (1) {
for (i=0;1i<100;i++) {
softPwmWrite (ledPin, 1i);
delay(20) ;

}

delay (300) ;

for (i=100;1>=0;i—) {
softPwmWrite (ledPin, 1i):
delay (20) ;

1

delay (300) ;

}

You can also adjust the rate of the state change of LED by changing the parameter of the delay() function in
the “for” loop.

This creates a software controlled PWM pin.

This updates the PWM value on the given pin.
For more details, please refer http://wiringpi.com/reference/software-pwm-library/

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/reference/software-pwm-library/

< support@freenove.com www.freenove.com [l

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

D4 support@freenove.com

Python Code 4.1.1 BreathingLED

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 04.1.1_BreathingLED directory of Python code.

2. Use the Python command to execute Python code “BreathingLED.py”.

After the program is executed, you will see that the LED gradually turns ON and then gradually turns OFF

similar to “breathing”.
The following is the program code:

import RPi.GPIO as GPIO
import time
LedPin = 12 # define the LedPin
def setup():

global p

GPIO0. setmode (GPTO. BOARD)

GPT0. setup (LedPin, GPI0.OUT)
GPI0. output (LedPin, GPI0.LOW)

use PHYSICAL GPIO Numbering
set LedPin to OUTPUT mode

p = GPIO.PWM(LedPin, 500)
p. start (0)

set PWM Frequence to 500Hz
set initial Duty Cycle to 0

def loop():
while True:
for dec in range(0, 101, 1):
p. ChangeDutyCycle (dc)
time. sleep (0. 01)

make the led brighter

time. sleep(1)

-1, -1):
p. ChangeDutyCycle (dc)
time. sleep (0. 01)

for dc in range (100, # make the led darker

time. sleep(1)

def destroy():
p.stop() # stop PWM
GP10.cleanup() # Release all GPIO

if name == main ’ # Program entrance
print (Program is starting ...)
setup()
try:
Loop ()

make ledPin output LOW level to turn off LED

set dc value as the duty cycle

set dc value as the duty cycle

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()

The LED is connected to the IO port called GPIO18. The LedPin is defined as pin 12 and set to output mode
according to the corresponding chart for pin designations. Then create a PWM instance and set the PWM
frequency to 1000HZ and the initial duty cycle to 0%.

LedPin = 12 # define the LedPin

def setup():
global p
GPIO0. setmode (GPTO. BOARD) # use PHYSICAL GPIO Numbering
GPIO. setup(LedPin, GPIO.OUT) # set LedPin to OUTPUT mode
GPIO. output (LedPin, GPIO.LOW) # make ledPin output LOW level to turn off LED

p = GPIO.PWM(LedPin, 500) # set PWM Frequence to 500Hz
p. start (0) # set initial Duty Cycle to 0

There are two “for” loops used to control the breathing LED in the next endless “while” loop. The first loop
outputs a power signal to the ledPin PWM from 0% to 100% and the second loop outputs a power signal to
the ledPin PWM from 100% to 0%.
def loop():
while True:

for de in range(0, 101, 1): # make the led brighter

p. ChangeDutyCycle (dc) # set dc value as the duty cycle
time. sleep (0. 01)

time. sleep(1)

for dc in range (100, -1, -1): # make the led darker
p. ChangeDutyCycle (dc) # set dc value as the duty cycle
time. sleep (0. 01)

time. sleep(1)

The related functions of PWM are described as follows:

To create a PWM instance:

To start PWM, where dc is the duty cycle (0.0 <= dc <= 100.0)

To change the frequency, where freq is the new frequency in Hz

To change the duty cyclewhere 0.0 <= dc <= 100.0

To stop PWM.
For more details regarding methods for using PWM with RPi.GPIO, please refer to:
https://sourceforge.net/p/raspberry-gpio-python/wiki/PWM/

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://sourceforge.net/p/raspberry-gpio-python/wiki/PWM/

B www.freenove.com D4 support@freenove.com

Chapter 5 RGB LED

In this chapter, we will learn how to control a RGB LED.

An RGB LED has 3 LEDs integrated into one LED component. It can respectively emit Red, Green and Blue
light. In order to do this, it requires 4 pins (this is also how you identify it). The long pin (1) is the common
which is the Anode (+) or positive lead, the other 3 are the Cathodes (-) or negative leads. A rendering of a
RGB LED and its electronic symbol are shown below. We can make RGB LED emit various colors of light and
brightness by controlling the 3 Cathodes (2, 3 & 4) of the RGB LED

4 1
R G B
I Rt
2] 3 2 3 4
Red, Green, and Blue light are called 3 Primary Colors when discussing light (Note: for pigments such as paints,
the 3 Primary Colors are Red, Blue and Yellow). When you combine these three Primary Colors of light with

varied brightness, they can produce almost any color of visible light. Computer screens, single pixels of cell
phone screens, neon lamps, etc. can all produce millions of colors due to phenomenon.

RGB

If we use a three 8 bit PWM to control the RGB LED, in theory, we can create 2*2°2°=16777216 (16 million)
colors through different combinations of RGB light brightness.
Next, we will use RGB LED to make a multicolored LED.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m < support@freenove.com www.freenove.com [l

Project 5.1 Multicolored LED

Component List

Raspberry Pi (with 40 GPIO) x1 RGB LED x1 Resistor 220Q x3
GPIO Extension Board & Wire x1
Breadboard x1 M
Jumper Wire [
—a. 4

Circuit

Schematic diagram

3.3v 5V
—31spa1 TXDO |8
—21sCcL1 RXDO |10
LEDL —L1GPIO4 GPIO18-12
— — W 11GPI017 GPI023}16
™ B I 31GPI027 GPI024 18
W A24GPI022 GPIO25}2
N g0 -19dmosi CE0}-24
- 2LImiso CE1}26
R ~234SCLK SCLO}&
~2L{SDAO GPIO12}3
~291GPIO5 GPIO16 {3
S11GPIos6 GPIO20
331Gpi013 GPI021 40
_a-ﬁiLeplow
GPI1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

TXDOs
RXDOw

Raspberry Pi GPIO Extension Shield

‘AddAdiAAARAdAsANAAAAAAAAGAGAGAAAARARARAR

Video: https://youtu.be/tbnX2AsX2y4

In this kit, the RGB led is Common anode. The voltage difference between LED will make it work. There is

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/tbnX2AsX2y4

B www.freenove.com D4 support@freenove.com

no visible GND. The GPIO ports can also receive current while in output mode.
If circuit above doesn’t work, the RGB LED may be common cathode. Please try following wiring.
There is no need to modify code for random color.

Raspberry Pi GPIO Extension Shield

M EERERRRERRRRRRRRRRRERRRERRRRRERRRRRRREL

Code

We need to use the software to make the ordinary GPIO output PWM, since this project requires 3 PWM and
in RPi only one GPIO has the hardware capability to output PWM,

C Code 5.1.1 Colorful LED

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 05.1.1_ColorfulLED directory of C code.

cd ~/Freenove_ Kit/Code/C_Code/05.1.1_ColorfulLED

2. Use following command to compile “ColorfulLED.c” and generate executable file “ColorfulLED".
Note: in this project, the software PWM uses a multi-threading mechanism. So “-Ipthread” option need
to be add to the compiler.

gcc ColorfulLED.c -o ColorfulLED -IwiringPi -Ipthread

3. And then run the generated file “ColorfulLED".

sudo ./ColorfulLED

After the program is executed, you will see that the RGB LED shows lights of different colors randomly.

The following is the program code:

#include <wiringPi.h>
#include <softPwm. h>
#include <stdio. h>
#include <stdlib.h>

#define ledPinRed 0
#idefine ledPinGreen 1

fidefine ledPinBlue 2

© 0 3 O O1 & W N

void setupLedPin (void)
{

—_
— O

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

softPwmCreate (ledPinRed, 0, 100); //Creat SoftPWM pin for red
softPwmCreate (ledPinGreen, 0, 100); //Creat SoftPWM pin for green
softPwmCreate (ledPinBlue, 0, 100); //Creat SoftPWM pin for blue

void setLedColor (int r, int g, int b)

{
softPwmWrite (ledPinRed, 1); //Set the duty cycle
sof tPwmWrite (ledPinGreen, g); //Set the duty cycle
softPwmWrite (1edPinBlue, b); //Set the duty cycle

int main(void)
{

int r, g b;

printf ("Program is starting ...\n”);

wiringPiSetup () ; //Initialize wiringPi.

setupLedPin () ;
while (1) {
r=random ()%100; //get a random in (0, 100)
g=random ()%100; //get a random in (0, 100)
b=random()%100; //get a random in (0, 100)
setLedColor (r, g, b) ;//set random as the duty cycle value
// If you are using common anode RGBLED, it should be setLedColor (100-r, 100-g, 100-b)
// If you want show red, it should be setLedColor (0, 100, 100)
printf ("r=%d, g=%d, b=%d \n”,r,g,b);
delay (1000) ;
}

return 0;

First, in subfunction of ledinit(), create the software PWM control pins used to control the R, G, B pin
respectively.

void setupLedPin (void)

{
softPwmCreate (ledPinRed, 0, 100); //Creat SoftPWM pin for red
softPwmCreate (ledPinGreen, 0, 100); //Creat SoftPWM pin for green
softPwmCreate (ledPinBlue, 0, 100); //Creat SoftPWM pin for blue

}
Then create subfunction, and set the PWM of three pins.

- void setLedColor (int r, int g, int b)

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com m

softPwmWrite(ledPinRed, 1); //Set the duty cycle
sof tPwmWrite (ledPinGreen, g); //Set the duty cycle
softPwmWrite (ledPinBlue, b); //Set the duty cycle

}
Finally, in the “while” loop of main function, get three random numbers and specify them as the PWM duty
cycle, which will be assigned to the corresponding pins. So RGB LED can switch the color randomly all the

time.

while (1) {
r=random ()%100; //get a random in (0, 100)
g=random ()%100; //get a random in (0, 100)
b=random ()%100; //get a random in (0, 100)
setLedColor (r, g, b) ;//set random as the duty cycle value
printf ("r=%d, g=%d, b=%d \n”, 1, g, b);
delay (1000) ;

}

The related function of PWM Software can be described as follows:

This function will return a random number.

For more details about Software PWM, please refer to: http://wiringpi.com/reference/software-pwm-library/

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/reference/software-pwm-library/

m D4 support@freenove.com

www.freenove.com Il

Python Code 5.1.1 ColorfulLED

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 05.1.1_ColorfulLED directory of Python code.

2. Use python command to execute python code “ColorfulLED.py”.

After the program is executed, you will see that
The following is the program code:

the RGB LED randomly lights up different colors.

import RPi.GPIO as GPIO
import time

import random

pins = [11, 12, 13]

def setup():
global pwmRed, pwmGreen, pwmBlue
GPI0. setmode (GP10. BOARD)
GPIO. setup(pins, GPIO. OUT)
GPIO. output (pins, GPIO.HIGH)
pwmRed = GPIO. P (pins[0], 2000)
pwmGreen = GPIO.PWM(pins[1], 2000)
pwmBlue = GPIO.PWM(pins[2], 2000)
pwmRed. start (0)
pwmGreen. start (0)
pwmBlue. start (0)
def setColor(r val, g val,b val):
pwmRed. ChangeDutyCycle (r val)
pwmGreen. ChangeDutyCycle (g val)
pwmBlue. ChangeDutyCycle (b _val)
def loop():
while True :
r=random. randint (0, 100) #get
g=random. randint (0, 100)
b=random. randint (0, 100)
setColor (r, g, b) #iset

define the pins for R:11,G:12,B:13

use PHYSICAL GPIO Numbering
set RGBLED pins to OUTPUT mode
make RGBLED pins output HIGH level

set initial Duty Cycle to O

set PWM Frequence to 2kHz
set PW Frequence to 2kHz
set PWM Frequence to 2kHz

change duty cycle for three pins to r val, g val,b val

change pwmRed duty cycle to r val

a random in (0, 100)

random as a duty cycle value

If you are using common anode RGBLED, it should be setColor(100-r, 100-g, 100-b)
If you want show red, it should be setColor(0, 100, 100)

print (=%, g=%d, b=%d ~ %(r ,g, b))

time. sleep (1)

def destroy():

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

D4 support@freenove.com

pwmRed. stop ()
pwnGreen. stop ()
pwmBlue. stop ()
GPIO0. cleanup ()

if name == main # Program entrance
print (Program is starting ...)
setup ()
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program

destroy()

In last chapter, we learned how to use Python language to make a pin output PWM. In this project, we output
to three pins via PWM and the method is exactly the same as we used in the last chapter. In the “while” loop
of “loop” function, we first generate three random numbers, and then specify these three random numbers
as the PWM values for the three pins, which will make the RGB LED produce multiple colors randomly.

def loop():
while True :
r=random. randint (0, 100) #get a random in (0, 100)
g=random. randint (0, 100)
b=random. randint (0, 100)
setColor (r, g, b)
print Cr=%d, g=%d, b=%d = %(r ,g, b))

time. sleep(1)

fiset random as a duty cycle value

About the randint() function :

This function can return a random integer (a whole number value) within the

specified range (a, b).

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com Il

Chapter 6 Buzzer

In this chapter, we will learn about buzzers and the sounds they make. And in our next project, we will use an
active buzzer to make a doorbell and a passive buzzer to make an alarm.

Project 6.1 Doorbell

We will make a doorbell with this functionality: when the Push Button Switch is pressed the buzzer sounds
and when the button is released, the buzzer stops. This is a momentary switch function.

Component List

Raspberry Pi (with 40 GPIO) x1
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

Jumper Wire

NPN transistorxl Active buzzer x1
(S8050)

Push Button
Switch x1

Resistor 1kQ x1

Resistor 10kQ x2

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

Component knowledge

Buzzer

A buzzer is an audio component. They are widely used in electronic devices such as calculators, electronic
alarm clocks, automobile fault indicators, etc. There are both active and passive types of buzzers. Active
buzzers have oscillator inside, these will sound as long as power is supplied. Passive buzzers require an
external oscillator signal (generally using PWM with different frequencies) to make a sound.

Active buzzer Passive buzzer

-+

i

1 1
— 2
T e

Active buzzers are easier to use. Generally, they only make a specific sound frequency. Passive buzzers
require an external circuit to make sounds, but passive buzzers can be controlled to make sounds of various
frequencies. The resonant frequency of the passive buzzer in this Kit is 2kHz, which means the passive
buzzer is the loudest when its resonant frequency is 2kHz.

How to identify active and passive buzzer?

1. Asarule, there is a label on an active buzzer covering the hole where sound is emitted, but there are
exceptions to this rule.

2. Active buzzers are more complex than passive buzzers in their manufacture. There are many circuits and
crystal oscillator elements inside active buzzers; all of this is usually protected with a waterproof coating
(and a housing) exposing only its pins from the underside. On the other hand, passive buzzers do not
have protective coatings on their underside. From the pin holes, view of a passive buzzer, you can see
the circuit board, coils, and a permanent magnet (all or any combination of these components
depending on the model.

Active buzzer bottom Passive buzzer bottom
Transistors

A transistor is required in this project due to the buzzer's current being so great that GPIO of RPi's output
capability cannot meet the power requirement necessary for operation. A NPN transistor is needed here to

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

support@freenove.com www.freenove.com Il

amplify the current.

Transistors, full name: semiconductor transistor, is a semiconductor device that controls current (think of a
transistor as an electronic “amplifying or switching device”. Transistors can be used to amplify weak signals,
or to work as a switch. Transistors have three electrodes (PINs): base (b), collector (c) and emitter (e). When
there is current passing between "be" then "ce" will have a several-fold current increase (transistor
magnification), in this configuration the transistor acts as an amplifier. When current produced by "be" exceeds
a certain value, "ce" will limit the current output. at this point the transistor is working in its saturation region
and acts like a switch. Transistors are available as two types as shown below: PNP and NPN,

PNP transistor NPN transistor
1) E 3]C
P 5 I g
B B
14283] e 18283 11 E
E B C E B C

In our kit, the PNP transistor is marked with 8550, and the NPN transistor is marked with 8050.

Thanks to the transistor's characteristics, they are often used as switches in digital circuits. As micro-controllers
output current capacity is very weak, we will use a transistor to amplify its current in order to drive components
requiring higher current.

When we use a NPN transistor to drive a buzzer, we often use the following method. If GPIO outputs high
level, current will flow through R1 (Resistor 1), the transistor conducts current and the buzzer will make sounds.
If GPIO outputs low level, no current will flow through R1, the transistor will not conduct currentand buzzer
will remain silent (no sounds).

When we use a PNP transistor to drive a buzzer, we often use the following method. If GPIO outputs low level,
current will flow through R1. The transistor conducts current and the buzzer will make sounds. If GPIO outputs
high level, no current flows through R1, the transistor will not conduct current and buzzer will remain silent
(no sounds). Below are the circuit schematics for both a NPN and PNP transistor to power a buzzer.

NPN transistor to drive buzzer PNP transistor to drive buzzer
SV sV
(111 R1
2 ||| Buzzer 1kQ
1T Uno Pin AN [Q1
R1
1kQ
Uno Pin AW Q1 111
2 |J)| Buzzer
T

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

m < support@freenove.com www.freenove.com [l

Circuit

Schematic diagram with RPi GPIO Extension Shield

1
=2
T R2
3.3V 5V ke
—31sDA1 TXDO }-8
» —24SCL1 RXDOHO- o
—L1GPI04 GPIO181-12 AN—9
H\Nv—%—cmow GPI1023 g
GPI027 GPI024
150 51GPI022 GPI025 }-22..
194mosi CEO0 |24
21Imiso CE1 28 ™
-234SCLK scLopeé- |
271spAao GPIO12}32 |
291GPI05 GPI016 |36~
S11GpPios GP1020 |38~
-331GPI013 GP1021 140
é%emom
(GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

GNDe

GPI024e

® © ® 00 00 0000 00 0 0 0 00
Pt et et bt et

® © 0o 0 0 0 0 0 0 00 0 0 0 0 0 00
® ® 000 0 0 0 0 00 0 0 0 0 e e
® © 0 00 00 0 0 00 0 0 0 0 0 e

Raspberry Pi GPIO Extension Shield

Video: https://youtu.be/R_dmi3YwY-U
Note: in this circuit, the power supply for the buzzer is 5V, and pull-up resistor of the push button switch is
connected to the 3.3V power feed. Actually, the buzzer can work when connected to the 3.3V power feed
but this will produce a weak sound from the buzzer (not very loud).

Code

In this project, a buzzer will be controlled by a push button switch. When the button switch is pressed, the
buzzer sounds and when the button is released, the buzzer stops. It is analogous to our earlier project that
controlled an LED ON and OFF.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/R_dmi3YwY-U

B www.freenove.com D4 support@freenove.com

C Code 6.1.1 Doorbell

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 06.1.1_Doorbell directory of C code.

2. Use following command to compile “Doorbell.c” and generate executable file “Doorbell.c”.

3. Then run the generated file “Doorbell”.

After the program is executed, press the push button switch and the will buzzer sound. Release the push
button switch and the buzzer will stop.
The following is the program code:

#include <wiringPi.h>
#include <stdio.h>

#define buzzerPin 0 //define the buzzerPin
#tdefine buttonPin 1 //define the buttonPin

void main(void)
{

printf ("Program is starting ... \n”);

wiringPiSetup () ;

pinMode (buzzerPin, OUTPUT) ;
pinMode (buttonPin, INPUT) ;

pul1lUpDnControl (buttonPin, PUD UP); //pull up to HIGH level
while (1) {

if(digitalRead (buttonPin) == LOW){ //button is pressed
digitalWrite (buzzerPin, HIGH); //Turn on buzzer
printf ("buzzer turned on >>> \n”);

}

else { //button is released
digitalWrite (buzzerPin, LOW); //Turn off buzzer
printf ("buzzer turned off <<< \n”):

}
The code is exactly the same as when we used a push button switch to control an LED. You can also try using
the PNP transistor to achieve the same results.

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

IEEN o< support@freenove.com www freenove.com [l

Python Code 6.1.1 Doorbell

First, observe the project result, then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 06.1.1_Doorbell directory of Python code.

2. Use python command to execute python code “Doorbell.py”.
After the program is executed, press the push button switch and the buzzer will sound. Release the push
button switch and the buzzer will stop.

The following is the program code:
import RPi.GPIO as GPIO

buzzerPin = 11 # define buzzerPin

12 # define buttonPin

buttonPin

def setup():

GPTO0. setmode (GPTO. BOARD) # use PHYSICAL GPIO Numbering

GPIO. setup(buzzerPin, GPIO.OUT) # set buzzerPin to OUTPUT mode

GPIO. setup (buttonPin, GPIO.IN, pull up down=GPIO.PUD UP) # set buttonPin to PULL UP
INPUT mode

def loop():
while True:

if GPIO. input (buttonPin)==GPIO.LOW: # if button is pressed
GPIO. output (buzzerPin, GPI0. HIGH) # turn on buzzer
print (buzzer turned on >>>)

else : # if button is relessed
GPIO. output (buzzerPin, GPI0. LOW) # turn off buzzer
print (buzzer turned off <<<)

def destroy():

GPTO. cleanup () # Release all GPIO
if name == main # Program entrance
print (Program is starting...’)
setup()
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

The code is exactly the same as when we used a push button switch to control an LED. You can also try using
the PNP transistor to achieve the same results.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com m

Project 6.2 Alertor

Next, we will use a passive buzzer to make an alarm.
The list of components and the circuit is similar to the doorbell project. We only need to take the Doorbell
circuit and replace the active buzzer with a passive buzzer.

Code

In this project, our buzzer alarm is controlled by the push button switch. Press the push button switch and the
buzzer will sound. Release the push button switch and the buzzer will stop.

As stated before, it is analogous to our earlier project that controlled an LED ON and OFF.

To control a passive buzzer requires PWM of certain sound frequency.

C Code 6.2.1 Alertor

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 06.2.1_Alertor directory of C code.

cd ~/Freenove_Kit/Code/C_Code/06.2.1_Alertor

2. Use following command to compile “Alertor.c” and generate executable file “Alertor”. “-Im” and “-Ipthread”
compiler options need to added here.

gcc Alertor.c -o Alertor -lwiringPi -Im -Ipthread

3. Then run the generated file “Alertor”.

sudo ./Alertor

After the program is executed, press the push button switch and the buzzer will sound. Release the push
button switch and the buzzer will stop.
The following is the program code:

#include <wiringPi.h>
#include <stdio. h>
#include <softTone.h>
#include <math.h>

#tdefine buzzerPin 0 //define the buzzerPin
#tdefine buttonPin 1 //define the buttonPin

void alertor (int pin) {
int x;
double sinVal, toneVal;

for (x=0;x<360;x++) { // frequency of the alertor is consistent with the sine wave

sinVal = s7in(x * (M PI / 180)): //Calculate the sine value

toneVal = 2000 + sinVal * 500; //Add the resonant frequency and weighted sine
value

softToneWrite (pin, toneVal) ; //output corresponding PWM

support@freenove.com [l

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

delay (1) ;

1

void stopAlertor (int pin) {
softToneWrite (pin, 0) ;

}

int main(void)

{

printf ("Program is starting ... \n”);

wiringPiSetup () ;

pinMode (buzzerPin, OUTPUT) ;
pinMode (buttonPin, INPUT);
softToneCreate (buzzerPin); //set buzzerPin
pul1UpDnControl (buttonPin, PUD UP); //pull up to HIGH level
while (1) {
if(digitalRead (buttonPin) == LOW){ //button is pressed
alertor (buzzerPin) ; // turn on buzzer
printf ("alertor turned on >>> \n”):
1
else { //button is released
stopAlertor (buzzerPin); // turn off buzzer

printf ("alertor turned off <<< \n”):

}

return 0;

The code is the same to the active buzzer but the method is different. A passive buzzer requires PWM of a
certain frequency, so you need to create a software PWM pin though softToneCreate (buzzeRPin). Here
softTone is designed to generate square waves with variable frequency and a duty cycle fixed to 50%, which
is a better choice for controlling the buzzer.

softToneCreate (buzzeRPin) ; ‘
In the while loop of the main function, when the push button switch is pressed the subfunction alertor() will
be called and the alarm will issue a warning sound. The frequency curve of the alarm is based on a sine curve.
We need to calculate the sine value from 0 to 360 degrees and multiplied by a certain value (here this value
is 500) plus the resonant frequency of buzzer. We can set the PWM frequency through softToneWrite (pin,
toneVal).

void alertor(int pin) {
int x;
double sinVal, toneVal;
for (x=0;x<360;x++) { //The frequency is based on the sine curve
sinVal = sin(x * (M_PI / 180));

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

D4 support@freenove.com

toneVal = 2000 + sinVal * 500;
softToneWrite (pin, toneVal) ;
delay (1) ;

If you want to stop the buzzer, just set PWM frequency of the buzzer pin to 0.

void stopAlertor (int pin) {
softToneWrite (pin, 0) ;

The related functions of softTone are described as follows:

This creates a software controlled tone pin.

This updates the tone frequency value on the given pin.

For more details about softTone, please refer to :http://wiringpi.com/reference/software-tone-library/

support@freenove.com [l

101

mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/reference/software-tone-library/

M support@freenove.com www.freenove.com [l

Python Code 6.2.1 Alertor

First observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 06.2.1_Alertor directory of Python code.

2. Use the python command to execute the Python code “Alertor.py”.

After the program is executed, press the push button switch and the buzzer will sound. Release the push
button switch and the buzzer will stop.
The following is the program code:

import RPi.GPIO as GPIO

import time

import math

buzzerPin = 11 # define the buzzerPin

buttonPin = 12 # define the buttonPin

def setup():

global p

GPIO. setmode (GPIO0. BOARD) # Use PHYSICAL GPIO Numbering

GPIO. setup (buzzerPin, GPIO.OUT) # set RGBLED pins to OUTPUT mode

GPIO. setup (buttonPin, GPIO.IN, pull up down=GPIO.PUD UP) # Set buttonPin to INPUT
mode, and pull up to HIGH level, 3.3V

p = GPIO.PWM(buzzerPin, 1)

p. start(0) ;

def loop():
while True:
if GPIO. input (buttonPin)==GPI0. LOW:
alertor ()
print (alertor turned on >>> ')
else :
stopAlertor ()
print (alertor turned off <<<)
def alertor():
p. start (50)
for x in range (0, 361) : # Make frequency of the alertor consistent with the sine wave
sinVal = math.sin(x * (math.pi / 180.0)) # calculate the sine value
toneVal = 2000 + sinVal * 500 # Add to the resonant frequency with a Weighted
p. ChangeFrequency (toneVal) # Change Frequency of PWM to toneVal
time. sleep (0. 001)

def stopAlertor():

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

p. stop ()

def destroy():

GPIO0. output (buzzerPin, GPIO.LOW) # Turn off buzzer
GPIO. cleanup () # Release GPI0O resource
if name == main : # Program entrance
print (Program is starting...’)
setup ()
try:
Loop()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

The code is the same to the active buzzer but the method is different. A passive buzzer requires PWM of a
certain frequency, so you need to create a software PWM pin through softToneCreate (buzzeRPin). The way
to create a PWM was introduced earlier in the BreathingLED and RGB LED projects.
def setup():

global p

GPIO. setmode (GPTO. BOARD) # Use PHYSICAL GPIO Numbering

GPIO. setup (buzzerPin, GPIO.OUT) # set RGBLED pins to OUTPUT mode

GPIO. setup (buttonPin, GPIO.IN, pull up down=GPIO.PUD UP) # Set buttonPin to INPUT
mode, and pull up to HIGH level, 3.3V

p = GPIO.PWM(buzzerPin, 1)

p. start(0) ;

In the while loop loop of the main function, when the push button switch is pressed the subfunction alertor()
will be called and the alarm will issue a warning sound. The frequency curve of the alarm is based on a sine
curve. We need to calculate the sine value from 0 to 360 degrees and multiplied by a certain value (here this
value is 500) plus the resonant frequency of buzzer. We can set the PWM frequency through softToneWrite
(pin, toneVal).
def alertor():
p. start (50)
for x in range(0, 361) :
sinVal = math. sin(x * (math.pi / 180.0))
toneVal = 2000 + sinVal * 500
p. ChangeFrequency (toneVal)
time. sleep (0. 001)

When the push button switch is released, the buzzer (in this case our Alarm) will stop.

def stopAlertor():
p. stop ()

support@freenove.com [l

103

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

(Important) Chapter 7 ADC

We have learned how to control the brightness of an LED through PWM and that PWM is not a real analog
signal. In this chapter, we will learn how to read analog values via an ADC Module and convert these analog

values into digital.

Project 7.1 Read the Voltage of Potentiometer

In this project, we will use the ADC function of an ADC Module to read the voltage value of a potentiometer.

Component List

Raspberry Pi x1 Jumper Wire M/M x16

GPIO Extension Board & Ribbon Cable x1
—-- - -
Breadboard x1

Rotary potentiometer x1 | ADC module x1 Resistor 10kQ x2

A0 ADC yCC
> 7830
PCF8591 . amm

FREENOVE
A7 Freenove GND

This product contains only one ADC module, there are two types, PCF8591 and ADS7830. For the projects
described in this tutorial, they function the same. Please build corresponding circuits according to the ADC
module found in your Kit.

ADC module: PCF8591 ADC module: ADS7830
Model diagram Actual Picture Model diagram Actual Picture

. ADC
_AD _ADST8% \Yole
AT

PCF8591

SDA
C

A2 SCL
A3 D1

A4 DO

A5 COM

AB =

- N aE =

A7 Freenove GND

FREENOVE

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D} support@freenove.com

Circuit knowledge

ADC

An ADC is an electronic integrated circuit used to convert analog signals such as voltages to digital or
binary form consisting of 1s and Os. The range of our ADC module is 8 bits, that means the resolution is
2/8=256, so that its range (at 3.3V) will be divided equally to 256 parts.

Any analog value can be mapped to one digital value using the resolution of the converter. So the more bits

the ADC has, the denser the partition of analog will be and the greater the precision of the resulting conversion.

DIGITAL
N

255
254
253
252

o= WA

N
ov 3.3V ° ANALOG

Subsection 1: the analog in range of 0V-3.3/256 V corresponds to digital 0;
Subsection 2: the analog in range of 3.3 /256 V-2#*3.3 /256V corresponds to digital 1;

The resultant analog signal will be divided accordingly.

DAC

The reversing this process requires a DAC, Digital-to-Analog Converter. The digital I/0 port can output high
level and low level (0 or 1), but cannot output an intermediate voltage value. This is where a DAC is useful.
The DAC module PCF8591 has a DAC output pin with 8-bit accuracy, which can divide VDD (here is 3.3V) into
2°=256 parts. For example, when the digital quantity is 1, the output voltage value is 3.3/256 *1 V, and when
the digital quantity is 128, the output voltage value is 3.3/256 *128=1.65V, the higher the accuracy of DAC,
the higher the accuracy of output voltage value will be.

support@freenove.com [l

105

mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Component knowledge

Potentiometer

Potentiometer is a resistive element with three Terminal parts. Unlike the resistors that we have used thus far
in our project which have a fixed resistance value, the resistance value of a potentiometer can be adjusted. A
potentiometer is often made up by a resistive substance (a wire or carbon element) and movable contact
brush. When the brush moves along the resistor element, there will be a change in the resistance of the
potentiometer’s output side (3) (or change in the voltage of the circuit that is a part). The illustration below
represents a linear sliding potentiometer and its electronic symbol on the right.

»
»
< 1

1 32 2

Between potentiometer pin 1 and pin 2 is the resistive element (a resistance wire or carbon) and pin 3 is
connected to the brush that makes contact with the resistive element. In our illustration, when the brush
moves from pin 1 to pin 2, the resistance value between pin 1 and pin 3 will increase linearly (until it reaches
the highest value of the resistive element) and at the same time the resistance between pin 2 and pin 3 will
decrease linearly and conversely down to zero. At the midpoint of the slider the measured resistance values
between pin 1 and 3 and between pin 2 and 3 will be the same.

In a circuit, both sides of resistive element are often connected to the positive and negative electrodes of
power. When you slide the brush “pin 3", you can get variable voltage within the range of the power supply.

. R1
Pin 3 10kQ

Rotary potentiometer

Rotary potentiometers and linear potentiometers have the same function; the only difference being the
physical action being a rotational rather than a sliding movement.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

support@freenove.com

PCF8591

The PCF8591 is a single-chip, single-supply low power 8-bit CMOS data acquisition device with four analog

inputs, one analog output and a serial 12C-bus interface. The following table is the pin definition diagram of

PCF8591.
SYMBOL | PIN | DESCRIPTION TOP VIEW
AINO 1
AN 2 Analog inputs (A/D ter)

nalog inputs converter
A'Ng 3 AN [1] U 16] VoD
AIN 4
AO 5 ANt [2] [15] aout
Al 6 Hardware address AIN2 E E VREF
A2 7
Vss 8 Negative supply voltage AIN3 E E AGND

2C-bus d . / PCFB8531 .
SDA 9 I2C-bus data input/output AO E E EXT
SCL 10 | 12C-bus clock input ‘
OSsC 11 | Oscillator input/output Al '_-5—_ 1__11 0sc
EXT 12 | external/internal switch for oscillator input A2 E _1_2] SCL
AGND 13 | Analog ground
Vref 14 | Voltage reference input Vss E EI SDA
AOUT 15 | Analog output(D/A converter)
Vvdd 16 | Positive supply voltage

For more details about PCF8591, please refer to the datasheet which can be found on the Intemnet.

ADS7830

The ADS7830 is a single-supply, low-power, 8-bit data acquisition device that features a serial 12C interface

and an 8-channel multiplexer. The following table is the pin definition diagram of ADS7830.

SYMBOL PIN DESCRIPTION TOP VIEW
CHO 1
CH1 2 _
Analog input channels
CH2 3
(A/D converter)
CH3 4
CH4 5

support@freenove.com [l

107

mailto:support@freenove.com
http://www.freenove.com/

108 support@freenove.com

www.freenove.com [l

CH5 6
CH6 7
CH7 8
GND 9 Ground
: Internal +2.5V Reference,
REF in/out | 10
External Reference Input
COM 11 Common to Analog Input Channel
A0 12
Hardware address
Al 13
SCL 14 Serial Clock
SDA 15 Serial Sata
+VDD 16 Power Supply, 3.3V Nominal

11
10

<]

REF,/ REF 1

GND

12C communication

I2C (Inter-Integrated Circuit) has a two-wire serial communication mode, which can be used to connect a

micro-controller and its peripheral equipment. Devices using 12C communications must be connected to the
serial data line (SDA), and serial clock line (SCL) (called I2C bus). Each device has a unique address which can
be used as a transmitter or receiver to communicate with devices connected via the bus.

B support@freenove.com

mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

D4 support@freenove.com

Circuit with ADS7830

Schematic diagram

3.3V |
2
A0 VCC
A ADC SDA T__é_ii
4_1 sy A2 SCL| —L
.l D1j—e ok
ADS7830 I i

1 w—y A4 DOy
==y A5 COMp—= Ji
i o
=1 A7 eene eGND -ZL
. 23,
- via
1 29
- el
33
321
S

SDA1
SCL1
GPIO4
GPIO17
GP1027
GPI1022
MOSI
MISO

' SCLK
'SDAO
GPIO5
GPIO6
GPIO13
GPIO19

3.

3V

GND

5V

TXDO
RXDO
GPIO18
GPIO23
GPI024
GPIO25
CEO
CE1
SCLO
GPIO12
GPIO16
GPIO20
GPIO21

GPIO26 Raspberry Pi
GPIO Extension Shield

PEBREPRPERRRr

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

This product contains only one ADC module.

Raspberry Pi GPIO Extension Shield

e o o o e o 0o 0 0 . e o 0 ® o 0o 0 0
e o o o e o 0 0 0 0 e o o e o 0o 0 0
U I ¢ o 0 0 0 . ® o0 0000000
e o o 0 0 0 UGN ¢ P 0 0 v e e e
LI I) © 6 00 00 00600 00000000000
o e o © 000 00 000000000000
g‘ggg lg.g LI ® o0 0000000
% L
~~~~~ %m" ‘e de o o e o o ® e 0o 0 0 0 0 0 0 0
38§§ggg§ ° o o ® o0 00000 00
oolono- e o 0 0 o o 0 ® e 000 00 0 0 0
° o o o o 0 0 e o 0 ® o0 00000 00
o e LI e o 0 ® e 0o 00000 00
o e o L I LRI
o ® e o 00 oo e ¢ o 0 00

Video: https://youtu.be/PSUCctu_DgA

support@freenove.com [l



mailto:support@freenove.com
http://www.freenove.com/
mailto:support@freenove.com
https://youtu.be/PSUCctu_DqA

< support@freenove.com

www.freenove.com [l

Circuit with PCF8591

Schematic diagram

}

w

AO

FLEELE ]

Vss

AIN2
AIN3

AINO VDDi—O—o
AIN Aout

PCF8591
1

3.3V R3
r 10kQ
oA Se—————

Vrefi

Agnd

EXT

0SC

1
Freenove
SCL

|

e

SDA

3.3V

R2 3.3V 5V

93 1spA1 TXDO

S 1scL1 RXDO

—LIGPIO4 GPIO18
ALIGPIO17 GPI023
A31GpPI027 GP1024
15.1GPI1022 GPIO25
19 1MmoslI CEOQ
211MIso CE1
231SCLK SCLO
2L1SDA0 GPIO12
291GPI05 GPIO16
S311GPIO6 GPI020
331GPIO13 GPI021
-32.1GPIO19
=y

(GPIO26 Raspberry Pi
GPIO Extension Shield
GND

PEBRPPEREPIE

Hardware connection

Raspberry Pi GPIO Extension Shield

Please keep the chip mark consistent to make the chips under right direction and position.

B support@freenove.com



mailto:support@freenove.com
http://www.freenove.com/

The 12C interface in Raspberry Pi is disabled by default. You will need to open it manually and enable the 12C

interface as follows:
Type command in the Terminal:

sudo raspi-config
Then open the following dialog box:

1 Change User Password
2 Metwork Options

3 Boot Options

4 Localisation Options
5 Interfacing Options
6 Overclock

7 Advanced Options

8 Update

9 About raspi-config

<Select>

— 1 Raspberry Pi Software Configuration Tool (raspi-config) b——

Change password for the current u

Configure network settings
Configure options for start-up
Set up language and regional sett
Configure connections to peripher
Configure overclocking for your P
Configure advanced settings
Update this tool to the latest we
Information about this configurat

<Finish=>

Choose “5 Interfacing Options” then “P5 I2C” then “Yes” and then “Finish” in this order and restart your RPi.

The 12C module will then be started.

Type a command to check whether the 12C module is started

Ismod | grep i2c

If the 12C module has been started, the following content will be shown. *bcm2708" refers to the CPU model.
Different models of Raspberry Pi display different contents depending on the CPU installed:

pi@raspberrypi:

b
12¢
pi@raspberrypi:

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

Next, type the command to install [2C-Tools. It is available with the Raspberry Pi OS by default.
sudo apt-get install i2c-tools
I2C device address detection:

i2cdetect -y 1
When you are using the PCF8591 Module, the result should look like this:

pi@raspberrypi:

o 1 2 32 4

Here, 48 (HEX) is the 12C address of ADC Module (PCF8591).

When you are using ADS, the result should look like this:

pi@raspberrypi: iz tect -y 1
B 1 2 3

Here, 4b (HEX) is the I2C address of ADC Module (ADS7830).

sudo apt-get install python-smbus
sudo apt-get install python3-smbus

For C code for the ADC Device, a custom library needs to be installed.
1. Use cd command to enter folder of the ADC Device library.

cd ~/Freenove_Kit/Libs/C-Libs/ADCDevice

2. Execute command below to install the library.

sh ./build.sh
A successful installation, without error prompts, is shown below:

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

pi@raspberrypi

i] ] omp Leten

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

Next, we will execute the code for this project.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via:

1. Use cd command to enter 07.1.1_ADC directory of C code.

cd ~/Freenove_Kit/Code/C_Code/07.1.1_ADC

2. Use following command to compile “ADC.cpp” and generate the executable file “ADC".
g++ ADC.cpp -0 ADC -lwiringPi -IADCDevice

3. Then run the generated file “ADC”.

sudo ./ADC

After the program is executed, adjusting the potentiometer will produce a readout display of the
potentiometer voltage values in the Terminal and the converted digital content.

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.

The following is the code:

1 #include <wiringPi.h>

2 #include <wiringPilI2C.h>

3 #include <stdio.h>

4 #include <ADCDevice. hpp>

5

§) ADCDevice *adc; // Define an ADC Device class object

7

8 int main(void) {

9 adc = new ADCDevice();

10 printf ( )

11

12 if (adc—>detectI2C( ) { // Detect the pcf8591.

13 delete adc;

14 adc = new PCF8591() ; // 1f detected, create an instance of PCF8591.
15 }

16 else if (adc—>detectI2C( )) {// Detect the ads7830

17 delete adc;

18 adc = new ADS7830() ; // If detected, create an instance of ADS7830

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

}

elsef
printf("No correct 12C address found, \n”
“Please use command ~i2cdetect —y 1’ to check the 12C address! \n”
"Program Exit. \n”);
return —-1;

}

while (1) {
int adcValue = adc—>analogRead(0); //read analog value of AO pin
float voltage = (float)adcValue / 255.0 % 3.3; // Calculate voltage
printf ("ADC value : %d , \tVoltage : % 2fV\n”, adcValue, voltage) :
delay (100) ;

}

}

In this code, a custom class library "ADCDevice" is used. It contains the method of utilizing the ADC Module
in this project, through which the ADC Module can easily and quickly be used. In the code, you need to first
create a class pointer adc, and then point to an instantiated object. (Note: An instantiated object is given a
name and created in memory or on disk using the structure described within a class declaration.)

ADCDevice *adc; // Define an ADC Device class object
adc = new ADCDevice();
Then use the member function detectlC(addr) in the class to detect the 12C module in the circuit. Different
modules have different I2C addresses. Therefore, according to the different addresses, we can determine what
the ADC module is in the circuit. When the correct module is detected, the pointer adc will point to the address
of the object, and then the previously pointed content will be deleted to free memory. The default address of
ADC module PCF8591 is 0x48, and that of ADC module ADS7830 is Ox4b.

if (adc—>detectI2C(0x48)) { // Detect the pcf8591.
delete adc;
adc = new PCF8591() ; // 1f detected, create an instance of PCF8591.
}
else if (adc—>detectI2C(0x4b)) {// Detect the ads7830
delete adc;
adc = new ADS78300) ; // 1f detected, create an instance of ADS7830
}
else{
printf("No correct 12C address found, \n”
“"Please use command ' i2cdetect -y 1’ to check the 12C address! \n”
"Program Exit. \n”);
return —1;
}

support@freenove.com [l

115



mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

When you have a class object pointed to a specific device, you can get the ADC value of the specific channel
by calling the member function analogRead (chn) in this class

- int adcValue = adc—>analogRead(0); //read analog value of AO pin

Then according to the formula, the voltage value is calculated and displayed on the Terminal.
float voltage = (float)adcValue / 255.0 % 3.3; // Calculate voltage
printf ("ADC value : %d , \tVoltage : % 2fV\n”, adcValue, voltage) ;

Reference

class ADDevice |

This is a base class. All ADC module classes are its derived classes. It has a real function and a virtual
function.

int detectI2C(int addr) ;
This is a real function, which is used to detect whether the device with given 12C address exists. If it exists,
return 1, otherwise return 0.

virtual int analogRead(int chn) ;
This is a virtual function that reads the ADC value of the specified channel. It is implemented in a derived
class.

e

These two classes are derived from the ADCDevice class and mainly implement the function

analogRead(chn).

int analogRead(int chn) ;
This returns the value read on the supplied analog input pin.
Parameter chn: For PCF8591, the range of chn is 0, 1, 2, 3. For ADS7830, the range of is 0, 1, 2, 3,4, 5, 6, 7.

You can find the source file of this library in the folder below:
~/Freenove_Kit/Libs/C-Libs/ADCDevice/

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

For Python code, ADCDevice requires a custom module which needs to be installed.
1. Use cd command to enter folder of ADCDevice.

cd ~/Freenove_Kit/Libs/Python-Libs/

2. Unzip the file.

tar zxvf ADCDevice-1.0.3.tar.gz

3. Open the unzipped folder.

cd ADCDevice-1.0.3

4. Install library for python2 and python3.

sudo python2 setup.py install

sudo python3 setup.py install

A successful installation, without error prompts, is shown below:

Execute the following command. Observe the project result and then learn about the code in detail.
If you have any concerns, please contact us via:

1. Use cd command to enter 07.1.1_ADC directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/07.1.1_ADC

2. Use the Python command to execute the Python code “ADC.py”.

python ADC.py

After the program is executed, adjusting the potentiometer will produce a readout display of the
potentiometer voltage values in the Terminal and the converted digital content.

The following is the code:

1 import time

2 from ADCDevice import *

3

4 adc = ADCDevice() # Define an ADCDevice class object
5

6 def setup():

7 global adc

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

if(adc. detectI2C(0x48)): # Detect the pcf8591.
adc = PCF8591()
elif (adc. detectI2C(0x4b)): # Detect the ads7830
adc = ADS7830()
else:
print ("No correct 12C address found, \n”
"Please use command ’i2cdetect -y 1’ to check the 12C address! \n”
"Program Exit. \n”);

exit(-1)

def loop():
while True:
value = adc. analogRead (0) # read the ADC value of channel 0
voltage = value / 255.0 % 3.3 # calculate the voltage value
print (ADC Value : %d, Voltage : % 2f %(value, voltage))
time. sleep (0. 1)

def destrov():

adc. close ()

if name == main ': # Program entrance
print (' Program is starting ... )
try:
setup ()
Loop ()
except KeyboardInterrupt: # Press ctrl-c¢ to end the program.
destroy ()

In this code, a custom Python module "ADCDevice" is used. It contains the method of utilizing the ADC
Module in this project, through which the ADC Module can easily and quickly be used. In the code, you need
to first create an ADCDevice object adc.

E adc = ADCDevice() # Define an ADCDevice class object

Then in setup(), use detecticlC(addr), the member function of ADCDevice, to detect the 12C module in the
circuit. Different modules have different 12C addresses. Therefore, according to the address, we can determine

which ADC Module is in the circuit. When the correct module is detected, a device specific class object is
created and assigned to adc. The default address of PCF8591 is 0x48, and that of ADS7830 is Ox4b.
def setup():
global adc
if(adc. detectI2C(0x48)): # Detect the pcf8591.
adc = PCF8591 ()
elif (adc. detectI2C(0x4b)): # Detect the ads7830
adc = ADS7830()

else:

print ("No correct [2C address found, \n”

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

“"Please use command i2cdetect -y 17 to check the 12C address! \n”
“Program Exit. \n”);

exit(-1)

When you have a class object of a specific device, you can get the ADC value of the specified channel by
calling the member function of this class, analogRead(chn). In loop(), get the ADC value of potentiometer.
value = adc. analogRead (0) # read the ADC value of channel 0

i

Then according to the formula, the voltage value is calculated and displayed on the terminal monitor.

voltage = value / 255.0 * 3.3 # calculate the voltage value
print (ADC Value : %d, Voltage : % 2f %(value, voltage))
time. sleep (0. 1)

Reference
About smbus Module:

The System Management Bus Module defines an object type that allows SMBus transactions on hosts
running the Linux kernel. The host kernel must support 12C, I2C device interface support, and a bus adapter
driver. All of these can be either built-in to the kernel, or loaded from modules.

In Python, you can use help(smbus) to view the relevant functions and their descriptions.
bus=smbus.SMBus(1): Create an SMBus class object.

bus.read_byte_data(address,cmd+chn): Read a byte of data from an address and return it.
bus.write_byte_data(address,cmd,value). Write a byte of data to an address.

This is a base class.

int detectI2C(int addr) ;

This is a member function, which is used to detect whether the device with the given 12C address exists. If
it exists, it returns true. Otherwise, it returns false.

These two classes are derived from the ADCDevice and the main function is analogRead(chn).

int analogRead(int chn) ;
This returns the value read on the supplied analog input pin.
Parameter chn: For PCF8591, the range of chn is 0, 1, 2, 3. For ADS7830, the range is 0,1, 2,3,4,5,6, 7.

You can find the source file of this library in the folder below:
~/Freenove_Kit/Libs/Python-Libs/ADCDevice-1.0.2/src/ADCDevice/ADCdevice.py

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Chapter 8 Potentiometer & LED

Earlier we learned how to use ADC and PWM. In this chapter, we learn to control the brightness of an LED by
using a potentiometer.

Project 8.1 Soft Light

In this project, we will make a soft light. We will use an ADC Module to read ADC values of a potentiometer
and map it to duty cycle ratio of the PWM used to control the brightness of an LED. Then you can change the
brightness of an LED by adjusting the potentiometer.

Component List

Raspberry Pi x1 Jumper Wire M/M x17
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

Rotary Potentiometer x1 | ADC Module x1 (Only one) 10kQ x2 | 220Q x1 | LED x1

—-- - -

PCF8591

D1

DO

COM

EEEE
A7 Fra—uu;veéND

FREENOVE

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [EPAl

Circuit with ADS7830

Schematic diagram

3_.3\"
3.3V
5 3.3V 5V
v o SDA1 TXDO }=8—
i SDA_/_/;/__i/J_ SCL1 RXDO Q-
S| SR v ol —LAGPI04 GPIO18}-12—
i3 Bi GPIO17 GP1023}16
: o 31GPI027 GP1024}-18
i oM 2 {GPI1022 GPI025 |22
| REF 19 Imosi CEO 24
= | Freenove _&J_ MlSO CE1 _26_
L 4 23.1SCLK SCLO 28~
= -2L1SDAO GPI012}32~
291GPI05 GPI016}-36~
S11GPIos GPI1020}38-
-33.1GPIO13 GPI021 40
- % GPIO19
- (GPI026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

- ee e e oo

- o e o o o e o o

= ©

- IS

=~ B

- c e e o0 ° e e e e e e e . . oo o o
iy O oo o0 B DI I R DN e e o 0
- 0 2086 ° e o 000 0000000000000 e o o 0
- S 8822 & e oo o 0 9 9 CECEUL S A e o o 0 o
- 3 ﬁ?égu g zggggg‘% o o o L ® o o o
- () (C} 3 &

= 2 x 55 | g

- o (e¥Y=X=] o ° o X 8 el e o e o o o e e o o o
- =oa= ] §82%8 gg

= = T s o e s o o o oo o e 0 D e e o 0
- > N N N e '..... e o o o e o o * o e o o o
- E o o 0o 0 ° o o v o ® o 0o 0 T o o o o o o
- B S . oo e o LI ooé e o o 0
- Q.

- (7]

- ©

- @ . . "R L
L LI L LI

Video: https://youtu.be/YMEfe9IWUGI

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/
mailto:support@freenove.com
https://youtu.be/YMEfe9IWU6I

< support@freenove.com

www.freenove.com [l

Circuit with PCF8591

Schematic diagram

R3
10kQ

._/\_\ A A /N =
w
B
‘ AINO VDD
PCF8591
==y AIN1 Aout
w1 AIN2 Vref
=1 AIN3 Agnd|
A0 EXT
1 OSC|
Freenove
A2
Vss SDA
!

§ ém
10kQ 3
5
i
11
B o 1
-l
el
w13
T2
‘ sl
LEDL _3L
o T 35
220Q ..QL

3.3V

SDA1
SCL1
GPIO4
GPIO17
GPIO27
GPIO22
MOSI
MISO
SCLK
SDAO
GPIO5
GPIO6
GPIO13
GPIO19

5V

TXDO
RXDO
GPIO18
GPIO23
GP1024
GPIO25
CEO
CE1
SCLO
GPIO12
GPIO16
GPI1020
GP1021

GPIO26 Raspberry Pi
GPIO Extension Shield

GND

PEERERRRRRREF

Hardware connection

Raspberry Pi GPIO Extension Shield

P~~~

LI N O 165840d O K]

B support@freenove.com



mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Code

C Code 8.1.1 Softlight

If you did not configure 12C, please refer to Chapter 7. If you did, please move on.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 08.1.1_Softlight directory of C code.

2. Use following command to compile “Softlight.cpp” and generate executable file “Softlight”.

3. Then run the generated file “Softlight”.

After the program is executed, adjusting the potentiometer will display the voltage values of the
potentiometer in the Terminal window and the converted digital quantity. As a consequence, the brightness
of LED will be changed.

The following is the code:

#include <wiringPi.h>
#include <stdio.h>
#include <softPwm.h>
#include <ADCDevice. hpp>

#define ledPin 0
ADCDevice *adc; // Define an ADC Device class object
int main(void) {

adc = new ADCDevice();

printf ("Program is starting ... \n”);

if (adc—>detectT2C(0x48)) { // Detect the pcf8591.

delete adc; // Free previously pointed memory
adc = new PCF8591() ; // 1f detected, create an instance of PCF8591.
}
else if(adc—>detectI2C(0x4b)) {// Detect the ads7830
delete adc; // Free previously pointed memory
adc = new ADS78300) ; // If detected, create an instance of ADS7830.
}
else{

printf ("No correct I12C address found, \n”
“Please use command ~i2cdetect -y 1’ to check the I2C address! \n”

“"Program Exit. \n”);

support@freenove.com [l

123



mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

return —1;

}

wiringPiSetup();

softPwmCreate (1edPin, 0, 100) ;

while (1) {
int adcValue = adc—>analogRead(0); //read analog value of A0 pin
softPwmWrite (ledPin, adcValuex100/255) ; // Mapping to PWM duty cycle
float voltage = (float)adcValue / 255.0 % 3.3; // Calculate voltage
printf ("ADC value : %d ,\tVoltage : % 2fV\n”, adcValue, voltage) :
delay (30) ;

}

return 0;

In the code, read the ADC value of potentiometer and map it to the duty cycle of PWM to control LED
brightness.

int adcValue = adc—>analogRead(0) ; //read analog value of A0 pin
softPwmWrite (ledPin, adcValuex100/255) ; // Mapping to PWM duty cycle

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [EVAS

Python Code 8.1.1 Softlight

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 08.1.1_Softlight directory of Python code

2. Use the python command to execute the Python code “Softlight.py”.

After the program is executed, adjusting the potentiometer will display the voltage values of the
potentiometer in the Terminal window and the converted digital quantity. As a consequence, the brightness
of LED will be changed.

The following is the code:
import RPi.GPIO as GPIO

import time

from ADCDevice import *

ledPin = 11
adc = ADCDevice() # Define an ADCDevice class object

def setup():

global adc

if (adc. detectI2C(0x48)): # Detect the pcf8591.
adc = PCF8591 ()

elif (adc. detectI2C(0x4b)): # Detect the ads7830
adc = ADS7830()

else:
print ("No correct 12C address found, \n”
“Please use command ~i2cdetect —y 1’ to check the 12C address! \n”
“Program Exit. \n”);
exit(-1)

global p

GPI0. setmode (GPI0. BOARD)

GPIO0. setup (1edPin, GPT0. OUT)

p = GPIO. PWM(1edPin, 1000)

p. start (0)
def loop():
while True:
value = adc. analogRead (0) # read the ADC value of channel 0
p. ChangeDutyCycle (valuex100/255) # Mapping to PWM duty cycle

voltage = value / 255.0 * 3.3 # calculate the voltage value

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

print (" ADC Value : %d, Voltage : % 2f %(value, voltage))
time. sleep (0. 03)

def destroy():

adc. close ()

if name == main ’: # Program entrance
print ( Program is starting ... )
try:
setup ()
loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

In the code, read ADC value of potentiometers and map it to the duty cycle of the PWM to control LED
brightness.

value = adc. analogRead (0) # read the ADC value of channel 0

p. ChangeDutyCycle (valuex100/255) # Mapping to PWM duty cycle

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com YA

Chapter 9 Photoresistor & LED

In this chapter, we will learn how to use a photoresistor to make an automatic dimming nightlight.

Project 9.1 NightLamp

A Photoresistor is very sensitive to the amount of light present. We can take advantage of the characteristic
to make a nightlight with the following function. When the ambient light is less (darker environment), the LED
will automatically become brighter to compensate and when the ambient light is greater (brighter
environment) the LED will automatically dim to compensate.

Component List

Raspberry Pi x1 Jumper Wires M/M x15
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

Photoresistor x1 ADC module x1 10kQ x3 | 220Q x1 | LED x1

—-

° ADC

A0 ADS7830

AT ! Bsoa
A2 SCL

A3 D1

PCF8591

A4 DO

A5 COM
A6 _REF
A7 Freenove GND

FREENOVE

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Component knowledge

Photoresistor

A Photoresistor is simply a light sensitive resistor. It is an active component that decreases resistance with
respect to receiving luminosity (light) on the component's light sensitive surface. A Photoresistor's resistance
value will change in proportion to the ambient light detected. With this characteristic, we can use a
Photoresistor to detect light intensity. The Photoresistor and its electronic symbol are as follows.

1T 2

The circuit below is used to detect the change of a Photoresistor’s resistance value:

R2
10kQ R1
Pin
Pin
R1 R2

In the above circuit, when a Photoresistor’s resistance vale changes due to a change in light intensity, the
voltage between the Photoresistor and Resistor R1 will also change. Therefore, the intensity of the light can
be obtained by measuring this voltage.

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

129

B www.freenove.com D4 support@freenove.com

Circuit with ADS7830

The circuit used is similar to the Soft light project. The only difference is that the input signal of the AINO pin
of ADC changes from a Potentiometer to a combination of a Photoresistor and a Resistor.

Schematic diagram

3.3V
prs VCCJ 3.3V 5V
N 3 IspA1 TXDO |8
il e S1scL1 RXDO {10
—1ia b —LIGPI04 GPIO18}12-
o]y AOSTEO GPIO17 GPI023 |16
il Sk A131GpPi027 GP1024 |18
—re e -124GPI022 GPI025 |22
] reenove —liMOSI CEO‘-ZA'—
21Imiso CE1 28~
231scLK ScLo k28
2L1spAao GPIO12}32—
291GpPI05 GPIO16 |36~
S1iGpPios GPI1020 38—
331GPI013 GPI021 |40
e % GPIO19
- (GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Video: https://youtu.be/r6p3zhXsyko

= e 00 o oeeee eee e . e oo
= B e o006 e e e ee oeeeee eeeee o0
= 2

] o

- (2]

- & I I e oo 00 e
= ee e oo v e e e 0o 00
- g ° e e e e 00 e o 0o 0o 0 0
— L s

- ) NI o o 5 oo 0000
= :ﬁ g g%gk oo 00 00
N o o g

- % a %ag e e 0000
- = = e oo o @ e 00 0 00
S O Q T e e 00000
- ? e o0 0 s . oo 00000
- g —— oo o0 0
- [}

—_ 7]

— 3]

- 14

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/r6p3zhXsyko

< support@freenove.com

www.freenove.com [l

Circuit with PCF8591

The circuit used is similar to the Soft light project. The only difference is that the input signal of the AINO pin

of ADC changes from a Potentiometer to a combination of a Photoresistor and a Resistor.

Schematic diagram

Mo
R4
Tgm 10kQ 5 3.3V 5V
-l Ao VDD ® SDA1 TXDO‘-J—
N P N I SIscL1 RXDO 10—
— a2 vref | —11L‘GPIO4 GPIO18 g
1 AIN3 Agnd | GPIO17 GPI023
0 mj—l 13 1Gpi027 GPI024 |18
N ‘sl - 12.1GPI022 GPI1025 |22
° Freency®: ce 9.1 MOSI CEO 124
I b 504 211IMISO CE1}26.
i 231scLk ScLo}28-
5 2L1sDA0 GPIO12}32
- um | ~294GPIO5 GPIO16 {36
- -311GPIO6 GPI020 }-38
-331GPI013 GPI021 40
-321GPI1019
- GP1026 Raspberry Pi
GPIO Extension Shield
. GND
2200 -
Hardware connection
el - R e G A
- 2
-~
: m LR LR B GED o © ¢ ¢ e o o
- g e R o o GED GED ¢ ¢ o o o o
- 7] ® e T EEEEEEEE o o o
: dc) 88 gmg (IO O O0OO0OO0O0 o o o
= ; |>_<§ 099 o o o o o 0
el o o
el 5 SS,, ‘oo
N & G . g
E ? * o 0 L ] * o o
é -§. e o . L ] e o o
= B
- 14

B support@freenove.com



mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [

Code

The code used in this project is identical with what was used in the last chapter.

C Code 9.1.1 Nightlamp

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 9.1.1_Nightlamp directory of C code.

2. Use following command to compile “Nightlamp.cpp” and generate executable file “Nightlamp”.

3. Then run the generated file “Nightlamp”.

After the program is executed, if you cover the Photoresistor or increase the light shining on it, the brightness
of the LED changes accordingly. As in previous projects the Terminal window will display the current input
voltage value of ADC module AO pin and the converted digital quantity.

The following is the program code:

#include <wiringPi.h>
#include <stdio.h>
#include <softPwm.h>
#include <ADCDevice. hpp>

#define ledPin 0
ADCDevice *adc; // Define an ADC Device class object
int main(void) {

adc = new ADCDevice();

printf ("Program is starting ... \n”);

if (adc—>detectT2C(0x48)) { // Detect the pcf8591.

delete adc; // Free previously pointed memory

adc = new PCF8591() ; // 1f detected, create an instance of PCF8591.
}
else if(adc—>detectI2C(0x4b)) {// Detect the ads7830

delete adc; // Free previously pointed memory

adc = new ADS78300) ; // If detected, create an instance of ADS7830
}
else{

printf ("No correct I12C address found, \n”

“Please use command ~i2cdetect -y 1’ to check the I2C address! \n”

“"Program Exit. \n”);

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com

www.freenove.com Il

return —1;
}
wiringPiSetup();
softPwmCreate (1edPin, 0, 100) ;
while (1) {
int value = adc—>analogRead(0) ;
softPwmWrite (1edPin, value*100/255) ;
float voltage = (float)value / 255.0 % 3.3;
printf ("ADC value : %d , \tVoltage :
delay (100) ;
}

return 0;

//read analog value of A0 pin

// calculate voltage

%. 2£V\n”, value, voltage) ;

B support@freenove.com



mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com K

Python Code 9.1.1 Nightlamp

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 10.1_Nightlamp directory of Python code.

2. Use the python command to execute the Python code “Nightlamp.py”.

After the program is executed, if you cover the Photoresistor or increase the light shining on it, the brightness
of the LED changes accordingly. As in previous projects the Terminal window will display the current input
voltage value of ADC module A0 pin and the converted digital quantity.
The following is the program code:

import RPi.GPIO as GPIO

import time

from ADCDevice import *

ledPin = 11 # define ledPin
adc = ADCDevice() # Define an ADCDevice class object

def setup():
global adc
if(adc. detectI2C(0x48)): # Detect the pcf8591.
adc = PCF8591 ()
elif (adc. detectI2C(0x4b)): # Detect the ads7830
adc = ADS7830()
else:
print ("No correct 12C address found, \n”
“Please use command ~i2cdetect —y 1’ to check the I2C address! \n”
“Program Exit. \n”);
exit(-1)
global p
GPI0. setmode (GPI0. BOARD)
GPIO. setup (ledPin, GPIO0. OUT)  # set ledPin to OUTPUT mode
GPI0. output (1edPin, GPTO. LOW)

p = GPIO. PWM(1edPin, 1000) # set PWM Frequence to 1kHz
p. start (0)

def loop():
while True:
value = adc. analogRead (0) # read the ADC value of channel 0
p. ChangeDutyCycle (valuex100/255)
voltage = value / 255.0 * 3.3

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com

www.freenove.com Il

print ( ADC Value : %d
time. sleep(0.01)

def destroy():
adc. close()
GPIO0. cleanup ()

. b . b
if name == main

print ( Program is starting ...

setup ()

try:
Loop ()

except KeyboardInterrupt:
destroy ()

Voltage : % 21 %(value, voltage))

# Program entrance

)

# Press ctrl-c to end the program.

B support@freenove.com



mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [EEE

Chapter 10 Thermistor

In this chapter, we will learn about Thermistors which are another kind of Resistor.

Project 10.1 Thermometer

A Thermistor is a type of Resistor whose resistance value is dependent on temperature and changes in
temperature. Therefore, we can take advantage of this characteristic to make a Thermometer.

Component List

Raspberry Pi x1 Jumper Wire M/M x14

GPIO Extension Board & Ribbon Cable x1

Breadboard x1

Thermistor x1 ADC module x1 Resistor 10kQ x3

» ADC
JAD e NOE

PCF8591 s mEE
A2 SCL

A3 D1
A4 DO
A5 COM
mmmm
A7 Fr;am;voéND

FREENOVE

Component knowledge

Thermistor

Thermistor is a temperature sensitive resistor. When it senses a change in temperature, the resistance of the
Thermistor will change. We can take advantage of this characteristic by using a Thermistor to detect
temperature intensity. A Thermistor and its electronic symbol are shown below.

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

The relationship between resistance value and temperature of a thermistor is;
Rt=R+EXP [B*(1/T2-1/T1)]

Where:

Rt is the thermistor resistance under T2 temperature;

R is in the nominal resistance of thermistor under T1 temperature;

EXP[n] is nth power of g;

B is for thermal index;

T1, T2 is Kelvin temperature (absolute temperature). Kelvin temperature=273.15 + Celsius temperature.
For the parameters of the Thermistor, we use: B=3950, R=10k, T1=25.
The circuit connection method of the Thermistor is similar to photoresistor, as the following:

5V

R2
10kQ

Pin AO

R1

We can use the value measured by the ADC converter to obtain the resistance value of Thermistor, and then
we can use the formula to obtain the temperature value.
Therefore, the temperature formula can be derived as:

T2 = 1/(1/T1 + In(Rt/R)/B)

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX} support@freenove.com S

Circuit with ADS7830

The circuit of this project is similar to the one in last chapter. The only difference is that the Photoresistor is
replaced by the Thermistor.

Schematic diagram

3. ”»\__
3.3V _
J 33V 5V
R4 A0 vce
10kQ ol 25 g 3 IsDA1 TXDO }—8—
- cal S1scCL1 RXDO O
—w o of~  —GPIO4 GPIO18 |2
g P ol . e GPIO7 GPI023 |16
. corf—  =iaeGPI027 GP1024 |18
I rerl— =124 GPI1022 GPI025}-22
s ™ 19 Imosi CEO el
211IMISO CE1}26
231sCLK SCLO}-28-
2L1SDA0 GPIO12}32-
29 1GPI05 GPIO16}35—
. 31lGPios GP1020}38_
= 33IGPI013 GPI021}40_
_L_ %Gplom
- GPI1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

— k] ° e o o o
= 2

- i =

— ()

- P oo ° ° e oo o0 I I O o000 000
- o o o ° o e oo o @ oo 00000 00 oo 000000
= 0 ® e ° ®® TrE oo e 000000 e o 000000
- 8 mﬁﬂ sa ‘3"385 e o ° o ° o e e 0o 0 0 0 0 0
- S o030 0203000 $3328%%

- X —— O = (AL AL ° o ® o 0 0 0 0 0 0
- L ao o oo o -

— o oY O (AL RG ) g %5

iy = o~ mo o H [t

- o o~ DW= o o -

- o Emg 29 geen gﬁoco Qg e e 00 0 0 0 0
B a2SSuZosaanaa = EIICICROIIOIONON
— ®e ) e o AR R oo 000 0 & e o e o 0006000
- ? ) . o N oo e _ e e . e o0 000 0
E g vgee oo o0 e 8 = . e . e e 00000 0
— Q.

- (2]

] ©

— o oo e o o oo o0 0
- oo 0 oo oo o0

Thermistor has longer pins than the one shown in circuit.

Video: https://youtu.be/spOalxanNMc

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/spOaIxanNMc

< support@freenove.com

www.freenove.com [l

Circuit with PCF8591

The circuit of this project is similar to the one in the last chapter. The only difference is that the Photoresistor
is replaced by the Thermistor.

Schematic diagram

B3 SL B BL
: R3 i
g i % - 33V 5V

AINO VDD, -
LW § 3 1SDA1 TXDO }—-3—
a2 Vref 2.1scL1 RXDO O
RS ) LIGPI04 GPIO18}12~
o oL JtlGrio17  GPio23H6-
t. osci— -134GPI027 GPI024 18
TSNS 12 1GPI022 GP1025|22—
S—tyas soA 19 ImosI CE0}24_
21Imiso CE1}26_
231scLK SCLO 28~
- - -2L1SDAO GPIO12}32—
= 291GPI0O5 GPIO16|36
S311GPIos GPI020}-38
-331GPI013 GPI021}40_

%‘GPIOW

(GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

= - o o o o 0o 0 0
- EE

- &

- w

- = o e e e e . ° e e 0000 00
- o oo LR . . ° ® o 0o 0 0 0 0 0
- 7] ®® XXX, o . ° e e e 000 00
- c [=X~] MmsQuw (=]

- [ [=}=] NN =2 o] o} ® o 0 0 0 0 0 0
- ] xx =3=tci=} T} e e 0000 00
= N = oo o B

- oY O (_?_\

- (@) ©

i o < N o 3

— o == Ema =] = e e 0000 00
- B 585355525225 0
— ®® Peee ° o EEEEEEE
: E‘ L L N L ] E2 2 ® O o ® 0 0 0 0
E g .. o. . . . e e o000 00
- Q.

- 7]

- ©

iy . EEEE
= ee e oo e

Thermistor has longer pins than the one shown in circuit.

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

In this project code, the ADC value still needs to be read, but the difference here is that a specific formula is
used to calculate the temperature value.

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via:

1. Use cd command to enter 10.1.1_Thermometer directory of C code.

cd ~/Freenove_Kit/Code/C_Code/10.1.1_Thermometer

2 Use following command to compile “Thermometer.cpp” and generate executable file “Thermometer”.
g++ Thermometer.cpp -0 Thermometer -lwiringPi -IADCDevice

3 Then run the generated file “Thermometer”.

sudo ./Thermometer

After the program is executed, the Terminal window will display the current ADC value, voltage value and
temperature value. Try to “pinch” the thermistor (without touching the leads) with your index finger and thumb
for a brief time, you should see that the temperature value increases.

=

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.

The following is the code:

1 #include <wiringPi.h>

2 #include <stdio.h>

3 #include <math.h>

4 #include <ADCDevice. hpp>

5

6 ADCDevice *adc; // Define an ADC Device class object
7

8 int main(void) {

9 adc = new ADCDevice();

10 printf ("Program is starting ... \n”);

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

DX support@freenove.com www.freenove.com [l

if(adc—>detectI2C (0x48)) { // Detect the pcf8591

delete adc; // Free previously pointed memory
adc = new PCF8591() ; // If detected, create an instance of PCF8591.
}
else if (adc—>detectI2C(0x1b)) {// Detect the ads7830
delete adc; // Free previously pointed memory
adc = new ADS78300) ; // 1f detected, create an instance of ADS7830.
}
else{
printf("No correct 12C address found, \n”
“"Please use command ' i2cdetect -y 1’ to check the 12C address! \n”
"Program Exit. \n”);
return —-1;
}
printf ("Program is starting ... \n”);
while (1) {
int adcValue = adc—>analogRead(0); //read analog value A0 pin
float voltage = (float)adcValue / 255.0 % 3.3; // calculate voltage
float Rt = 10 * voltage / (3.3 — voltage); //calculate resistance value of
thermistor
float tempK = 1/(1/(273.15 + 25) + log(Rt/10)/3950.0); //calculate temperature
(Kelvin)
float tempC = tempK —273.15; //calculate temperature (Celsius)

printf ("ADC value : %d , \tVoltage : %. 2fV,
\tTemperature : % 2fC\n”, adcValue, voltage, tempC) ;
delay (100) ;
}

return 0;

In the code, the ADC value of ADC module AO port is read, and then calculates the voltage and the resistance
of Thermistor according to Ohms Law. Finally, it calculates the temperature sensed by the Thermistor,
according to the formula.

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.
First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via:

1. Use cd command to enter 10.1.1_Thermometer directory of Python code.
cd ~/Freenove_Kit/Code/Python_Code/10.1.1_Thermometer

2. Use python command to execute Python code “Thermometer.py”.
python Thermometer.py

After the program is executed, the Terminal window will display the current ADC value, voltage value and
temperature value. Try to “pinch” the thermistor (without touching the leads) with your index finger and thumb
for a brief time, you should see that the temperature value increases.

i ue @ 107, : 1.38, Temperature

=

1
1
1
1
1
1
1
1
1
1
1
1
1.

The following is the code:

1 import RPi.GPIO as GPIO

2 import time

3 import math

4 from ADCDevice import *

5

6 adc = ADCDevice() # Define an ADCDevice class object
7

8 def setup():

9 global adc

10 if(adc. detectI2C(0x48)): # Detect the pcf8591.
11 adc = PCF8591()

12 elif(adc. detectI2C(0x4b)): # Detect the ads7830
13 adc = ADS7830()

14 else:

15 print ("No correct 12C address found, \n”

16 "Please use command ~i2cdetect -y 1’ to check the 12C address! \n”
17 “Program Exit. \n”);

18 exit(-1)

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

def loop():
while True:
value = adc. analogRead (0) # read ADC value AO pin
voltage = value / 255.0 % 3.3 # calculate voltage
Rt = 10 * voltage / (3.3 — voltage) # calculate resistance value of thermistor
tempK = 1/(1/(273.15 + 25) + math. log(Rt/10)/3950.0) # calculate temperature
(Kelvin)
tempC = tempK —273. 15 # calculate temperature (Celsius)

print ( ADC Value : %d, Voltage : %. 2f
Temperature : % 2f % (value, voltage, tempC))
time. sleep(0.01)

def destroy():
adc. close ()
GPIO0. cleanup ()

if name == main ’: # Program entrance
print ( Program is starting ... ')
setup ()
try:
Loop ()
except KeyboardInterrupt: # Press ctrl-c to end the program.
destroy ()

In the code, the ADC value of ADC module AO port is read, and then calculates the voltage and the resistance
of Thermistor according to Ohms Law. Finally, it calculates the temperature sensed by the Thermistor,
according to the formula.

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com KR

Chapter 11 Motor & Driver

In this chapter, we will learn about DC Motors and DC Motor Drivers and how to control the speed and
direction of a DC Motor.

Project 11.1 Control a DC Motor with a Potentiometer

In this project, a potentiometer will be used to control a DC Motor. When the Potentiometer is at the midpoint
position, the DC Motor will STOP, and when the Potentiometer is turned in either direction of this midpoint,
the DC Motor speed increases until it reached the endpoint where the DC Motor achieves its maximum speed.
When the Potentiometer is turned “Left” of the midpoint the DC Motor will ROTATE in one direction and when
turned “Right” the DC Motor will ROTATE in the opposite direction.

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wires x23

GPIO Extension Board & Ribbon Cable x1
—- - -
Breadboard x1

Breadboard Power Module x1 9V Battery (you provide) & 9V Battery Cable

Rotary DC Motor x1 10kQ x2 | ADC Module x1 L293D
Potentiometer x1 1 =TS

PCF8591 . W
s

A3 D1

A4 DO

A5

EEEE

A7 Freenove GND

FREENOVE

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Component knowledge

Breadboard Power Module

Breadboard Power Module is an independent circuit board, which can provide independent 5V or 3.3V power
to the breadboard when building circuits. It also has built-in power protection to avoid damaging your RPi
module. The schematic diagram below identifies the important features of this Power Module:

Power LED

Power Switch

= O

[ Power Jack USB Output Port ]

[ Output voltage selection Output voltage selection ]

L OFF3.3V 2 5V OFF 3.2,
Q0 i 1in 0000
[ Output port for power + - T Output port for power J

Here is an acceptable connection between Breadboard Power Module and Breadboard using a 9V battery
and the provided power harness:

5V OFF 3.3V
00CO

E
ONEE EEN

o
=

a

A

m
e e o o o
e e e o o
e e o 0 0
e e 0o o o
e e o o o
e e e o o
e e o o o
e e o o o
e e o o o
e e o o o
e e o 0 0

5V OFF 3.3V
Co00
+ -

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D< support@freenove.com &S]

DC Motor

DC Motor is a device that converts electrical energy into mechanical energy. DC Motors consist of two major
parts, a Stator and the Rotor. The stationary part of a DC Motor is the Stator and the part that Rotates is the
Rotor. The Stator is usually part of the outer case of motor (if it is simply a pair of permanent magnets), and
it has terminals to connect to the power if it is made up of electromagnet coils. Most Hobby DC Motors only
use Permanent Magnets for the Stator Field. The Rotor is usually the shaft of motor with 3 or more
electromagnets connected to a commutator where the brushes (via the terminals 1 & 2 below) supply
electrical power, which can drive other mechanical devices. The diagram below shows a small DC Motor with

two terminal pins.

|
1
2
——
1 2

When a DC Motor is connected to a power supply, it will rotate in one direction. If you reverse the polarity of
the power supply, the DC Motor will rotate in opposite direction. This is important to note.

g @8 g Q9
+ - -+

L293D

L293D is an IC Chip (Integrated Circuit Chip) with a 4-channel motor drive. You can drive a Unidirectional DC
Motor with 4 ports or a Bi-Directional DC Motor with 2 ports or a Stepper Motor (Stepper Motors are covered
later in this Tutorial).

1 L Enable 1 +V 16
2 2111 Ina 2>
3 31 out 1 out 4 14
4 41 ov ov B3
5 21 ov ov P2
6 L1 out2 out3 P11
7 WARTY In3 P2
8 =1 +Vmotor Enable 2 EN
293D

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Port description of L293D module is as follows:

Pin name Pin number Description

In x 2,7,10, 15 Channel x digital signal input pin

Out x 3,6,11, 14 Channel x output pin, input high or low level according to In x pin, gets
connected to +Vmotor or OV

Enablel 1 Channel 1 and Channel 2 enable pin, high level enable

Enable2 9 Channel 3 and Channel 4 enable pin, high level enable

ov 4,5,12, 13 Power Cathode (GND)

+V 16 Positive Electrode (VCC) of power supply, supply voltage 4.5~36V

+Vmotor 8 Positive Electrode of load power supply, provide power supply for the Out

pin x, the supply voltage is +V~36V

For more details, please see the datasheet for this IC Chip.

When using the L293D to drive a DC Motor, there are usually two connection options.

The following connection option uses one channel of the L239D, which can control motor speed through
the PWM, However the motor then can only rotate in one direction.

L293D Pin OQut —

Motor CM)

The following connection uses two channels of the L239D: one channel outputs the PWM wave, and the other
channel connects to GND. Therefore, you can control the speed of the motor. When these two channel signals
are exchanged, not only controls the speed of motor, but also can control the direction of the motor.

L293D Pin Out1 L293D Pin Out1

GND

GND  |L293D Pin Out 2

[L293D Pin Out 2

In practical use the motor is usually connected to channel 1 and by outputting different levels to inl1 and in2
to control the rotational direction of the motor, and output to the PWM wave to Enablel port to control the
motor’s rotational speed. If the motor is connected to channel 3 and 4 by outputting different levels to in3
and in4 to control the motor's rotation direction, and output to the PWM wave to Enable2 pin to control the
motor’s rotational speed.

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

147

B www.freenove.com D4 support@freenove.com

Circuit with ADS7830

Use caution when connecting this circuit because the DC Motor is a high -power component. Do not use the
power provided by the RPi to power the motor directly, as this may cause permanent damage to your
RPi! The logic circuit can be powered by the RPi’'s power or an external power supply, which should share a

common ground with RPi.

Schematic diagram

3.3V 3.3y
| 3.3V 5V
A0 VCC
iy ¢ g 3 ISDA1 TXDO }—8—
— sel 2.1SCL1 RXDO -0
- i - —LIGPI04 GPIO18}-12-~
LR I 1 iGPi017 GPI023 |16
ot com—  — 13 1GPI027 GP1024 18
e REFf— = N 151GPI1022 GPI025}22—
e 0 e, —1-9—‘MOS| CEO b
L293D 21IMISO CE1 }uafiee
~5| Enable2  +vmotor |5 o SCLK CL0 o
==11In3 In2 |
1% out3 out 2 - : 291GPI105 GPIO16 |36~
-l ov oV —21 211Gpios GPI020]-38—
T3 ov ov (5|1 -331GPIO13 GPI021 {40~
= outs out1ls 5 -224GPIO19
= 75| In4 In113 ~3L1GPI026 Raspberry Pi
16l *V Enable 17 GPIO Extension Shield
1 GND
5V
R——— |
3 o N c— —
) [ 3 —
SV% —4_ 33V

GND T T GND

BreadBoardPower

support@freenove.com [l



mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

R R R R R R R R RRREReRT)

Raspberry Pi GPIO Extension Shield

4

| |
=

LA

F/M Jumper Wire x2

Change the Jumper

Position to Change the
Motor's Supply Voltage
(3.3Vorb5V)

/

Select OFF

Press power switch when using.

Video: https://youtu.be/d5IRMTDK-wg

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/d5lRMTDK-wg

149

B www.freenove.com D4 support@freenove.com

Circuit with PCF8591

Use caution when connecting this circuit because the DC Motor is a high -power component. Do not use the
power provided by the RPi to power the motor directly, as this may cause permanent damage to your
RPi! The logic circuit can be powered by the RPi’'s power or an external power supply, which should share a
common ground with RPi.

Schematic diagram
3.3V
TIAINO  vdd}-18
—24AINT  poutft- | - | |
2 JAIN2  vrefl—14 10kQ 10kQ
—~4 AAIN3 AGND |13 33V 5V
5 1ao E)(TE—Q—||| 3 IspA1 TXDO |8~
6 Ia1 oscl-1- S 1scL1 RXDO 10—
7 {a2 scLf-10 LIGPI04 GPIO18 12—
8 lyss  spal-2 1 1GPI017 GPI023 16
t PCreol 13 1GPI1027 GPI024 18
—— ,, 15 1GP1022 GPI025 }-22—
- 2 19 Imosi CEOQ 24—
L233D 21IMmiso CE1}26_
~g| Enable 2 +Vmotor [g -2122 gghﬁ GPSISI{g -2-8—32
T ut out 2|2 1 291GPIO5 GPIO16(36
1| ov ov [ -311GPIO6 GPI020/38
-5 ov ov 24| -331GPIO13 GPI021{40-
o 1l outa out1fs 2 | | -324GPIO19
T 75| In4 In115 3L GPI026 Raspberry Pi
16V Enable 17 GPIO Extension Shield
1 GND
Sl 3.3V
L —— l
3 . i ——
, 1 —
SV% —-33v
GND T T GND
_ BreadBoardPower

support@freenove.com [l



mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Raspberry Pi GPIO Extension Shield

“e e
se e

s e e e
ce e e

GPIO6  GPIO12e
GPIO13  GNDe

.o
s

B LEE

se e

~

Change the Jumper

F/M Jumper Wire x2

Position to Change the
Motor's Supply Voltage
(3.3Vor5V)

w
CCO0 =mm mmE Q< 00CD
A e HO AS Z00 2 AcEH0AS

S
E .

The Power Switch

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

In code for this project, first read the ADC value and then control the rotation direction and speed of the DC
Motor according to the value of the ADC.

If you did not configure 12C, please refer to Chapter 7. If you did, please continue.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via:

1. Use cd command to enter 11.1.1_Motor directory of the C code.

cd ~/Freenove_Kit/Code/C_Code/11.1.1_Motor

2. Use the following command to compile “Motor.cpp” and generate the executable file “Motor”.

g++ Motor.cpp -0 Motor -lwiringPi -IADCDevice

3. Then run the generated file "Motor”.

sudo ./Motor

After the program is executed, you can use the Potentiometer to control the DC Motor. When the
Potentiometer is at the midpoint position, the DC Motor will STOP, and when the Potentiometer is turned in
either direction of this midpoint, the DC Motor speed increases until it reaches the endpoint where the DC
Motor achieves its maximum speed. When the Potentiometer is turned “Left” of the midpoint the DC Motor
will ROTATE in one direction and when turned “Right” the DC Motor will ROTATE in the opposite direction.
You will also see the ADC value of the potentiometer displayed in the Terminal with the motor direction and
the PWM duty cycle used to control the DC Motor’s speed.

The following is the code:

1 #include <wiringPi.h>
#include <stdio.h>
#include <softPwm. h>
#include <math.h>
#include <stdlib.h>
#include <ADCDevice. hpp>

~N O O B~ W DN

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

ttdefine motorPinl 2 //define the pin connected to L293D
#tdefine motorPin2 0
#tdefine enablePin 3

ADCDevice *adc; // Define an ADC Device class object

//Map function: map the value from a range to another range
long map(long value, long fromLow, long fromHigh, long toLow, long toHigh) {
return (toHigh—toLow)* (value—fromLow) / (fromHigh—fromLow) + toLow;
}
//motor function: determine the direction and speed of the motor according to the ADC
void motor (int ADC) {
int value = ADC —128;
if (value>0) {
digitalWrite (motorPinl, HIGH) ;
digitalWrite (motorPin2, LOW) ;
printf("turn Forward...\n”):
}
else if (value<0) {
digitalWrite (motorPinl, LOW) ;
digitalWrite (motorPin2, HIGH) ;
printf ("turn Back...\n");

}

else {
digitalWrite (motorPinl, LOW) ;
digitalWrite (motorPin2, LOW) ;
printf ("Motor Stop...\n”):

}

softPwmWrite (enablePin, map (abs (value), 0, 128, 0, 100)) ;

printf ("The PWM duty cycle is %d%%\n”, abs(value)*100/127) ;//print the PMW duty cycle
}
int main(void) {

adc = new ADCDevice();

printf ("Program is starting ... \n”);

if(adc—>detect12C(0x18)){  // Detect the pcf8591.

delete adc; // Free previously pointed memory
adc = new PCF8591() ; // If detected, create an instance of PCF8591.
}
else if (adc—>detectI2C(0x1b)) {// Detect the ads7830
delete adc; // Free previously pointed memory
adc = new ADS78300) ; // 1f detected, create an instance of ADS7830.
}
else{

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

printf("No correct I12C address found, \n”
“Please use command ~i2cdetect —y 1’ to check the I2C address! \n”
“Program Exit. \n”);
return —1;

}

wiringPiSetup() ;

pinMode (enablePin, OUTPUT) ;//set mode for the pin

pinMode (motorPinl, OUTPUT) ;

pinMode (motorPin2, OUTPUT) ;

softPwmCreate (enablePin, 0, 100) ; //define PMW pin

while (1) {
int value = adc—>analogRead(0); //read analog value of A0 pin
printf ("ADC value : %d \n”, value) ;

motor (value) ; //make the motor rotate with speed(analog value of A0O pin)
delay (100) ;

}

return 0;

Now that we have familiarity with reading ADC values, let’s learn the subfunction void motor (int ADC): first,
compare the ADC value with 128 (value corresponding to midpoint). When the current ADC value is higher,
motoRPinl outputs high level and motoRPin2 outputs low level to control the DC Motor to run in the “Forward”
Rotational Direction. When the current ADC value is lower, motoRPin1 outputs low level and motoRPin2
outputs high level to control the DC Motor to run in the “Reverse” Rotational Direction. When the ADC value
is equal to 128, motoRPinl and motoRPin2 output low level, the motor STOPS. Then determine the PWM
duty cycle according to the difference (delta) between ADC value and 128. Because the absolute delta value
stays within 0-128, we need to use the map() subfunction mapping the delta value to a range of 0-255. Finally,
we see a display of the duty cycle in Terminal.
void motor (int ADC) {
int value = ADC -128;
if (value>0) {
digitalWrite (motoRPinl, HIGH) ;
digitalWrite (motoRPin2, LOW) ;

printf (“turn Forward...\n”);

}

else if (value<0) {
digitalWrite (motoRPinl, LOW) ;
digitalWrite (motoRPin2, HIGH) ;
printf (“turn Backward...\n”);

}

else {
digitalWrite (motoRPinl, LOW) ;
digitalWrite (motoRPin2, LOW) ;
printf ("Motor Stop...\n”);

support@freenove.com [l

153



mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

}

softPwmWrite (enablePin, map (abs (value), 0, 128, 0, 100) ) ;

printf ("The PW duty cycle is %d%%\n”, abs (value)*100/127) :// print out PWM duty
cycle.

}

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

If you did not configure 12C and install Smbus, please refer to Chapter 7. If you did, please Continue.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via:

1.

Use cd command to enter 11.1.1_Motor directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/11.1.1_Motor

2. Use python command to execute the Python code “Motor.py”.

python Motor.py

After the program is executed, you can use the Potentiometer to control the DC Motor. When the
Potentiometer is at the midpoint position, the DC Motor will STOP, and when the Potentiometer is turned in
either direction of this midpoint, the DC Motor speed increases until it reaches the endpoint where the DC
Motor achieves its maximum speed. When the Potentiometer is turned “Left” of the midpoint the DC Motor
will ROTATE in one direction and when turned “Right” the DC Motor will ROTATE in the opposite direction.
You will also see the ADC value of the potentiometer displayed in the Terminal with the motor direction and

the PWM duty cycle used to control the DC Motor’s speed.

Turn Forward...

The following is the code:

1

© 0 N O O1 = W D

— = s e
=~ W N = O

import RPi.GPIO as GPIO
import time

from ADCDevice import #*

# define the pins connected to L293D

motoRPinl 13

motoRPin2 = 11

enablePin = 15

adc = ADCDevice() # Define an ADCDevice class object

def setup():
global adc
if(adc. detectI2C(0x48)): # Detect the pcf8591.
adc = PCF8591 ()

support@freenove.com [l



mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

elif (adc. detectI2C(0x4b)): # Detect the ads7830
adc = ADS7830()
else:
print ("No correct 12C address found, \n”
“Please use command ~i2cdetect —y 1’ to check the 12C address! \n”
“"Program Exit. \n”);
exit(-1)
global p
GPT0. setmode (GPTO. BOARD)
GPI0. setup (motoRPinl, GPI0. OUT) # set pins to OUTPUT mode
GPI0. setup (motoRPin2, GPI0. OUT)
GPI0. setup (enablePin, GPI0. OUT)

p = GPIO. PW(enablePin, 1000) # creat PWM and set Frequence to 1KHz
p. start (0)

# mapNUM function: map the value from a range of mapping to another range
def mapNUM(value, fromLow, fromHigh, toLow, toHigh) :
return (toHigh—toLow)* (value—fromLow) / (fromHigh—fromLow) + toLow

# motor function: determine the direction and speed of the motor according to the input
ADC value input
def motor(ADC) :
value = ADC -128
if (value > 0): # make motor turn forward
GPI0. output (motoRPinl, GPI0. HIGH) # motoRPinl output HIHG level
GPI0. output (motoRPin2, GPT10. LOW) # motoRPin2 output LOW level
print ( Turn Forward...’)
elif (value < 0): # make motor turn backward
GPI0. output (motoRPinl, GPI0. LOW)
GPI0. output (motoRPin2, GPI0. HIGH)
print ( Turn Backward...’)
else :
GPIO0. output (motoRPinl, GPI0. LOW)
GPI0. output (motoRPin2, GPIO0. LOW)
print ( Motor Stop...")
p. start (mapNUM(abs (value), 0, 128, 0, 100))
print ( The PWM duty cycle is %d%%\n’ %(abs(value)*100/127))  # print PMW duty cycle

def loop():
while True:
value = adc. analogRead(0) # read ADC value of channel 0
print (" ADC Value : %d %(value))

motor (value)

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

time. sleep(0.01)

def destroy():
GPIO0. cleanup ()

if name == main ’: # Program entrance
print ( Program is starting ... )
setup ()
try:
loop ()

except KeyboardInterrupt: # Press ctrl-c¢ to end the program.

destroy ()

Now that we have familiarity with reading ADC values, let’s learn the subfunction void motor (int ADC): first,
compare the ADC value with 128 (value corresponding to midpoint). When the current ADC value is higher,
motoRPin1 outputs high level and motoRPin2 outputs low level to control the DC Motor to run in the “Forward”
Rotational Direction. When the current ADC value is lower, motoRPin1 outputs low level and motoRPin2
outputs high level to control the DC Motor to run in the “Reverse” Rotational Direction. When the ADC value
is equal to 128, motoRPin1 and motoRPin2 output low level, the motor STOPS. Then determine the PWM
duty cycle according to the difference (delta) between ADC value and 128. Because the absolute delta value
stays within 0-128. We need to use the map() subfunction mapping the delta value to a range of 0-255.
Finally, we see a display of the duty cycle in Terminal.
def motor (ADC) :
value = ADC —-128
if (value > 0):
GPIO. output (motoRPinl, GPT0. HIGH)
GPI0. output (motoRPin2, GPI0. LOW)
print ( Turn Forward...’)
elif (value < 0):
GPIO. output (motoRPinl, GPI0. LOW)
GPIO. output (motoRPin2, GPI0. HIGH)
print ( Turn Backward...’)

else :
GPI0. output (motoRPinl, GPI0. LOW)
GPI0. output (motoRPin2, GPI0. LOW)
print ( Motor Stop...")
p. start (mapNUM (abs (value), 0, 128, 0, 100))
print ( The PWM duty cycle is %d%%\n' %(abs(value)*100/127))  #print PMW duty cycle

support@freenove.com [l

157



mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com Il

Chapter 12 74HC595 & Bar Graph LED

We have used LED Bar Graph to make a flowing water light, in which 10 GPIO ports of RPi are occupied. More
GPIO ports mean that more peripherals can be connected to RPi, so GPIO resource is very precious. Can we
make flowing water light with less GPIO ports? In this chapter, we will learn a component, 74HC595, which

can achieve the target.

Project 12.1 Flowing Water Light

Now let us learn how to use the 74HC595 IC Chip to make a flowing water light using less GPIO.

Component List

Raspberry Pi (with 40 GPIO) x1

Breadboard x1

GPIO Extension Board & Ribbon Cable x1

Jumper x17

—-- - -

74HC595 x1

Bar Graph LED x1

Resistor 220Q x8

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX support@freenove.com [IKE]

Component knowledge

74HC595

A 74HC595 chip is used to convert serial data into parallel data. A 74HC595 chip can convert the serial data
of one byte into 8 bits, and send its corresponding level to each of the 8 ports correspondingly. With this
characteristic, the 74HC595 chip can be used to expand the |O ports of a Raspberry Pi. At least 3 ports on the
RPI board are required to control the 8 ports of the 74HC595 chip.

1 16 - a1 vee 12
2 15 3 Q2 QO 7
3 14 @3 DS k3
4 13 = Q4 OE T
5 12 3 Q5 ST_CP 11
6 11 = Q6 SH_CP 0
7 10 1 Q7 MR 5
8 9 — GND Q7' |-
74HC595
The ports of the 74HC595 chip are described as follows:

Pin name Pin number Description

Q0-Q7 15,1-7 Parallel Data Output

VCC 16 The Positive Electrode of the Power Supply, the Voltage is 2~6V

GND 8 The Negative Electrode of Power Supply

DS 14 Serial Data Input

OE 13 Enable Output,

When this pin is in high level, Q0-Q7 is in high resistance state

When this pin is in low level, Q0-Q7 is in output mode

ST_CP 12 Parallel Update Output: when its electrical level is rising, it will update the
parallel data output.

SH_CP 11 Serial Shift Clock: when its electrical level is rising, serial data input register
will do a shift.

MR 10 Remove Shift Register: When this pin is in low level, the content in shift
register will be cleared.

Qr 9 Serial Data Output: it can be connected to more 74HC595 chips in series.

For more details, please refer to the datasheet on the 74HC595 chip.

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com [l

Circuit

Schematic diagram

3
3.3V 5V
—3.1SDA1 TXDO }=8—
et SCL 1 RXDO }-10-.
—LIGPI04 GPlIO18}12~
111Gpi017 GPI023 |16
,__-131GPI027 GPI024 |18
—__.131GpI022 GPI1025 |22
—194MmoslI CEO0 24—
21Imiso CE1 |28
231scLK SCLO}28-
2L14spao GPIO12}32
291GPI05 GPI016 36—
S11GPios GPI1020 |38
23 1GPIO13 GPI021 140
% GPIO19
GPIO26 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Pttt

Raspberry Pi GPIO Extension Shield

=i

.

1
® ® o0 000000 000 0 0
® © 00 00 0 000000 0 0
® ® o000 0000 000 0 0
LR

® © 0o 0 0 0 000 0 0 0 0 0
® ® o 0 000000 0 00

. o 0 00 ® e 0o 00
. . L B B LA B B L B L B

B support@freenove.com



mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com  [ESHI

Code

In this project we will make a flowing water light with a 74HC595 chip to learn about its functions.

C Code 12.1.1 LightWater02

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 12.1.1_LightWater02 directory of C code.

2. Use following command to compile “LightWater02.c” and generate executable file “LightWater02".

3. Then run the generated file “LightWater02".

After the program is executed, you will see that Bar Graph LED starts with the flowing water pattern flashing
from left to right and then back from right to left.
The following is the program code:

#include <wiringPi.h>
#include <stdio.h>
#include <wiringShift.h>

#idefine dataPin 0 //DS Pin of 74HC595(Pin14)
#idefine  latchPin 2  //ST CP Pin of 74HC595 (Pinl12)
#tdefine  clockPin 3 //CH CP Pin of 74HC595 (Pinll)

void shiftOut(int dPin, int cPin, int order, int val) {
int i;
for(i = 0; i < 8; i++){
digitalWrite(cPin, LOW) ;
if (order == LSBFIRST) {
digitalWrite(dPin, ((0x01&(val>>i)) == 0x01) ? HIGH : LOW);
delayMicroseconds (10) ;
1
else {//if (order == MSBFIRST) {
digitalWrite (dPin, ((0x80& (val<<i)) == 0x80) ? HIGH : LOW):
delayMicroseconds (10) ;
1
digitalWrite (cPin, HIGH) ;
delayMicroseconds (10) ;

int main(void)

{

int 1;

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

unsigned char x;

printf ("Program is starting ...\n”):

wiringPiSetup () ;

pinMode (dataPin, OUTPUT) ;
pinMode (1atchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
while (1) {
x=0x01;
for (i=0;1<8;i++) {
digitalWrite(latchPin, LOW) ; // Output low level to latchPin
~shiftOut (dataPin, clockPin, LSBFIRST, x) ;// Send serial data to 74HC595
digitalWrite(latchPin, HIGH);  //Output high level to latchPin, and 74HC595 will
update the data to the parallel output port.

x<<=1; //make the variable move one bit to left once, then the bright LED
move one step to the left once.
delay (100) ;
}
x=0x80;

for (i=0;i<8;i++) {
digitalWrite (latchPin, LOW) ;
_shiftOut (dataPin, clockPin, LSBFIRST, x) ;
digitalWrite(latchPin, HIGH) ;
x>>=1;
delay (100) ;

}
return 0;
}
In the code, we configure three pins to control the 74HC595 chip and define a one-byte variable to control
the state of the 8 LEDs (in the Bar Graph LED Module) through the 8 bits of the variable. The LEDs light ON
when the corresponding bit is 1. If the variable is assigned to 0x01, that is 00000001 in binary, there will be
only one LED ON.
x=0x01;
In the “while” cycle of main function, use two cycles to send x to 74HC595 output pin to control the LED. In
one cycle, x will shift one bit to the LEFT in one cycle, then when data of x is sent to 74HC595, the LED that is
turned ON will move one bit to the LEFT once.
for (i=0;1<8;i++) {
digitalWrite (latchPin, LOW) ; // Output low level to latchPin
_shiftOut (dataPin, clockPin, LSBFIRST, x) ;// Send serial data to 74HC595
digitalWrite (l1atchPin, HIGH) ; // Output high level to latchPin, and 74HC595
will update the data to the parallel output port

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

x<<=1; // make the variable move one bit to left once, then the bright LED
move one step to the left once.
delay (100) ;

In second cycle, the situation is the same. The difference is that x is shift from 0x80 to the RIGHT in order.

"<<"isthe left shift operator, which can make all bits of 1 byte shift by several bits to the left (high) direction
and add 0 on the right (low). For example, shift binary 00000001 by 1 bit to left:
bytex =1 << 1;
«— «— “«— «— «— “«— «—
—lojofofojojofofif—[o]
The result of x is 2 (binary 00000010) .
(ofoJofofofof1]o]

There is another similar operator” >>". For example, shift binary 00000001 by 1 bit to right:
bytex=1>>1;
— — — — — — —
(o]—lofofofofofofof1]~
The result of x is 0 (00000000) .
(ojojojojojojofo]

X <<=1isequivalenttox = x << landx >>= lisequivalenttox =x>>1

About shift function

This is used to shift an 8-bit data value in with the data appearing on the dPin and the clock being sent out
on the cPin. Order is either LSBFIRST or MSBFIRST. The data is sampled after the cPin goes high. (So cPin
high, sample data, cPin low, repeat for 8 bits) The 8-bit value is returned by the function.

This is used to shift an 8-bit data value out with the data being sent out on dPin and the clock being sent
out on the cPin. order is as above. Data is clocked out on the rising or falling edge - ie. dPin is set, then
cPin is taken high then low - repeated for the 8 bits.

For more details about shift function, please refer to: http://wiringpi.com/reference/shift-library/

support@freenove.com [l

163



mailto:support@freenove.com
http://www.freenove.com/
http://wiringpi.com/reference/shift-library/

M support@freenove.com www.freenove.com [l

Python Code 12.1.1 LightWater02

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 12.1.1_LightWater02 directory of Python code.

2. Use python command to execute Python code “LightWater02.py”.

After the program is executed, you will see that Bar Graph LED starts with the flowing water pattern flashing
from left to right and then back from right to left.
The following is the program code;

import RPi.GPIO as GPIO

import time

# Defines the data bit that is transmitted preferentially in the shiftOut function.

LSBFIRST = 1

MSBFIRST = 2

# define the pins for 74HC595

dataPin = 11 # DS Pin of 74HC595(Pinl14)
latchPin = 13 # ST CP Pin of 74HC595(Pinl2)

clockPin = 15 # CH CP Pin of 74HC595(Pinl11)

def setup():
GPIO. setmode (GPIO0. BOARD) # use PHYSICAL GPIO Numbering
GPIO. setup(dataPin, GPIO.OUT) # set pin to OUTPUT mode
GPIO. setup (latchPin, GPIO. OUT)
GPIO0. setup(clockPin, GPIO. OUT)

# shiftOut function, use bit serial transmission.
def shiftOut (dPin, cPin, order, val) :
for i in range(0, 8):
GPIO0. output (cPin, GPIO. LOW) ;
if(order == LSBFIRST) :
GPIO0. output (dPin, (0x01& (val>>i)==0x01) and GPIO.HIGH or GPIO. LOW)
elif (order == MSBFIRST) :
GPTO. output (dPin, (0x80& (val<<i)==0x80) and GPI0.HIGH or GPIO.LOW)
GPIO. output (cPin, GPI0. HIGH) ;

def loop():
while True:
x=0x01
for i in range(0,8):
GPIO. output (latchPin, GPIO. LOW) # Output low level to latchPin
shiftOut (dataPin, clockPin, LSBFIRST, x) # Send serial data to 74HC595
GPIO0. output (1atchPin, GPI0. HIGH) # Output high level to latchPin, and 74HC595 will
update the data to the parallel output port.

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

x<{<=1 # make the variable move one bit to left once, then the bright LED move one
step to the left once.
time. sleep(0. 1)
x=0x80
for i in range(0,8):
GPIO0. output (IatchPin, GPIO0. LOW)
shiftOut (dataPin, clockPin, LSBFIRST, x)
GPIO0. output (1atchPin, GPIO. HIGH)
x>>=1
time. sleep (0. 1)

def destroy():
GPIO. cleanup()

if name == main ’: # Program entrance
print ( Program is starting...’ )
setup ()
try:
Loop ()

except KeyboardInterrupt: # Press ctrl-c to end the program.

destroy ()

In the code, we define a shiftOut() function, which is used to output values with bits in order, where the dPin
for the data pin, cPin for the clock and order for the priority bit flag (high or low). This function conforms to
the operational modes of the 74HC595. LSBFIRST and MSBFIRST are two different flow directions.
def shiftOut(dPin, cPin, order, val) :
for i in range(0, 8) :
GPI0. output (cPin, GPTO0. LOW) ;
if (order == LSBFIRST) :
GPI0. output (dPin, (0x01&(val>>i)==0x01) and GPIO.HIGH or GPIO.LOW)
elif (order == MSBFIRST) :
GPI0. output (dPin, (0x80& (val<<i)==0x80) and GPIO.HIGH or GPIO.LOW)
GPI0. output (cPin, GPI10. HIGH) ;

In the loop() function, we use two cycles to achieve the action goal. First, define a variable x=0x01, binary
00000001. When it is transferred to the output port of 74HC595, the low bit outputs high level, then an LED
turns ON. Next, x is shifted one bit, when x is transferred to the output port of 74HC595 once again, the LED
that turns ON will be shifted. Repeat the operation, over and over and the effect of a flowing water light will
be visible. If the direction of the shift operation for x is different, the flowing direction is different.
def loop():
while True:
x=0x01
for i in range(0, 8):
GPI0. output (latchPin, GPTO. LOW) #Output low level to latchPin

support@freenove.com [l

165



mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

shiftOut (dataPin, clockPin, LSBFIRST, x) #Send serial data to 74HC595
GPIO. output (latchPin, GPIO. HIGH) #Output high level to latchPin, and 74HC595
will update the data to the parallel output port
x<<=1# make the variable move one bit to left once, then the bright LED move
one step to the left once
time. sleep (0. 1)
x=0x80
for i in range(0, 8):
GPI0. output (latchPin, GPIO0. LOW)
shiftOut (dataPin, clockPin, LSBFIRST, x)
GPI0. output (1atchPin, GPT0. HIGH)
x>>=1
time. sleep (0. 1)

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com KK

Chapter 13 74HC595 & 7-Segment Display

In this chapter, we will introduce the 7-Segment Display.

Project 13.1 7-Segment Display

We will use a 74HC595 IC Chip to control a 7-Segment Display and make it display sixteen decimal characters
"0" to “F".

Component List

Raspberry Pi (with 40 GPIO) x1 Jumper Wire x18
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

7T4HC5H95 x1 7-Segment Display x1 Resistor 220Q x8

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Component knowledge

7-segment display

A 7-Segment Display is a digital electronic display device. There is a figure "8" and a decimal point represented,
which consists of 8 LEDs. The LEDs have a Common Anode and individual Cathodes. Its internal structure and
pin designation diagram is shown below:

:0 L
L, = T

] 9 10 5

3,8

As we can see in the above circuit diagram, we can control the state of each LED separately. Also, by combining
LEDs with different states of ON and OFF, we can display different characters (Numbers and Letters). For
example, to display a “0”: we need to turn ON LED segments A, B, C, D, E and F, and turn OFF LED segments

G and DP.
'
-’
D

In this project, we will use a 7-Segment Display with a Common Anode. Therefore, when there is an input low
level to an LED segment the LED will turn ON. Defining segment “A” as the lowest level and segment “DP” as
the highest level, from high to low would look like this: “DP”, “G", “F", “E", “D", “C", “B”, “A”". Character "0"
corresponds to the code: 1100 0000b=0xcO0.

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com DX} support@freenove.com KSR

Circuit

Schematic diagram

EE
3.3V 3.3V 5v
Q0 ] —3-1SDA1 TXDO =8~
Q1 o—— A Ha vee ]g ~21sCL1 RXDO |10~
2 ——\W! 4@ Qo |3 —L1GPI04 GPIO18}12
oz —\W\ 13 DS |15 1 1GPIO17 GP1023}-16
Qi —AW Q4 OF |3 __-131GPI1027 GPI024 |18
AN 2los  stcp fE—T" ~131GPIO22 GPI025 {-22—
a5 —A\W\ Slas  sHcp p—o[ -12{MosI CEOQ}-24—
Q7 MA a7 MR 3——|é,~; 211IMISO CE1125
zo | GND Q7 |2 -231scLk SCLO}-28—
— e -2L4SDAO GPIO12}32—
- — 29GPI05 GPI016{-36—
=  311GPIOs GPI020}38
TSEGMENT -334GPI013 GPI021 {40
-35.1GPI019
GPI1026 Raspberry Pi
GPIO Extension Shield
S
bp G
coOM o
o <o D

TXDOw» £33
RXDO» £33

e e o ® o0 0
L e e e 0 0 0
all C====mip ¢ o ¢ o ¢
wlh ® © o 0 0 0 0 ®
o 600000000

Pttt

LY #GP104

Raspberry Pi GPIO Extension Shield

RRRR R R R R R R R R EREREEERRRRRERERL |

. o o 00 L R A
. LA L B B

Video: https://youtu.be/KSEOLdyuOFM

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/
https://youtu.be/KSE0LdyuOFM

< support@freenove.com www.freenove.com [l

Code

This code uses a 74HC595 IC Chip to control the 7-Segment Display. The use of the 74HC595 IC Chip is
generally the same throughout this Tutorial. We need code to display the characters “0” to “F’ one character
at a time, and then output to display them with the 74HC595 IC Chip.

C Code 13.1.1 SevenSegmentDisplay

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 13.1.1_SevenSegmentDisplay directory of C code.

cd ~/Freenove_Kit/Code/C_Code/13.1.1_SevenSegmentDisplay

2. Use following command to compile “SevenSegmentDisplay.c” and generate executable file
“SevenSegmentDisplay”.

gcc SevenSegmentDisplay.c -0 SevenSegmentDisplay -lwiringPi

3. Then run the generated file “SevenSegmentDisplay”.

sudo ./SevenSegmentDisplay

After the program is executed, the 7-Segment Display starts to display the characters “0” to “F" in succession.

The following is the program code:

#include <wiringPi.h>
#include <stdio. h>
#include <wiringShift.h>

#define dataPin 0 //DS Pin of 74HC595(Pinl4)

#tdefine  latchPin 2  //ST CP Pin of 74HC595 (Pinl12)

fidefine  clockPin 3 //CH CP Pin of T74HC595 (Pinl1)

//encoding for character 0-F of common anode SevenSegmentDisplay.

unsigned char
num[]={0xc0, 0xf9, 0xad, 0xb0, 0x99, 0x92, 0x82, 0x 8, 0x80, 0x90, 0x88, 0x83, 0xc6, Oxal, 0x86, 0x8e} :

void _shiftOut(int dPin, int cPin, int order, int val) {
int i;
for(i = 0; i < 8; it++){
digitalWrite(cPin, LOW) ;
if (order == LSBFIRST) {
digitalWrite(dPin, ((0x01&(val>>i)) == 0x01) ? HIGH : LOW);
delayMicroseconds (10) ;
}
else {//if (order == MSBFIRST) {
digitalWrite (dPin, ((0x80&(val<<i)) == 0x80) ? HIGH : LOW);
delayMicroseconds (10) ;
1
digitalWrite(cPin, HIGH) ;
delayMicroseconds (10) ;

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

int main(void)
{

int 1;

printf ("Program is starting ...\n”);

wiringPiSetup () ;

pinMode (dataPin, OUTPUT) ;
pinMode (1atchPin, OUTPUT) ;
pinMode (clockPin, OUTPUT) ;
while (1) {
for (i=0; i<sizeof (num) ;i++) {
digitalWrite(latchPin, LOW) ;
~shiftOut (dataPin, clockPin, MSBFIRST, num[i]) ; //Output the figures and the highest
level is transfered preferentially.
digitalWrite (latchPin, HIGH) ;
delay (500) :
1
for (i=0; i<sizeof (num) ; i++) {
digitalWrite(latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, num[i] & 0x7f);//Use the “&0x7f” to display
the decimal point
digitalWrite(latchPin, HIGH) ;
delay (500) ;

}

return 0;

}

First, we need to create encoding for characters “0” to “F" in the array.

unsigned char
num[ ]={0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90, 0x88, 0x83, 0xc6, Oxal, 0x86, 0x8e} ;

In the “for” loop of loop() function, use the 74HC595 IC Chip to output contents of array “num” successively.
SevenSegmentDisplay can then correctly display the corresponding characters. Pay attention to this in regard
to shiftOut function, the transmission bit, flag bit and highest bit will be transmitted preferentially.

for (i=0;i<sizeof (num) ;i++) {

digitalWrite (latchPin, LOW) :

_shiftOut (dataPin, clockPin, MSBFIRST, num[i]) ;//Output the figures and the
highest level is transfered preferentially

digitalWrite (latchPin, HIGH) ;

delay (500) ;

support@freenove.com [l

171



mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

If you want to display the decimal point, make the highest bit of each array “0”, which can be implemented
easily by num[i]&O0x7f.
[ | _shirtOut (dataPin, clockPin, MSBFIRST, num[i] & Ox7f)

Python Code 13.1.1 SevenSegmentDisplay

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 13.1.1_SevenSegmentDisplay directory of Python code.
cd ~/Freenove_Kit/Code/Python_Code/13.1.1_SevenSegmentDisplay
2. Use Python command to execute Python code “SevenSegmentDisplay.py”.
python SevenSegmentDisplay.py
After the program is executed, the 7-Segment Display starts to display the characters “0” to “F" in succession.
The following is the program code:
import RPi.GPIO as GPIO

import time

LSBFIRST = 1

MSBFIRST = 2

#tdefine the pins connect to 74HC595

dataPin = 11 #DS Pin of 74HC595(Pinl4)
latchPin = 13 #ST CP Pin of 74HC595(Pinl2)
clockPin = 15 #CH CP Pin of 74HC595(Pinll)

#SevenSegmentDisplay display the character “0”— “F”successively
num = [0xc0, 0xf9, Oxa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90, 0x88, 0x83, 0xc6, Oxal, 0x86, 0x8e]
def setup():

GPIO0. setmode (GPI0. BOARD) # Number GPIOs by its physical location

GPIO0. setup (dataPin, GPIO. OUT)

GPI0. setup(latchPin, GPIO. OUT)

GPI0. setup (clockPin, GPIO. OUT)

def shiftOut(dPin, cPin, order, val):
for i in range(0, 8) :
GPIO0. output (cPin, GPTI0. LOW) ;
if(order == LSBFIRST) :
GPI0. output (dPin, (0x01&(val>>i)==0x01) and GPIO.HIGH or GPIO.LOW)
elif(order == MSBFIRST) :
GPIO0. output (dPin, (0x80& (val<<i)==0x80) and GPIO.HIGH or GPIO.LOW)
GPIO. output (cPin, GPTO0. HIGH) ;

def loop():
while True:
for i in range (0, len(num)) :
GPI0. output (latchPin, GPI0. LOW)

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

shiftOut (dataPin, clockPin, MSBFIRST, num[i]) #Output the figures and the highest
level is transfered preferentially.

GPIO0. output (1atchPin, GPI0. HIGH)

time. sleep (0. 5)

for i in range (0, len(num)) :

GPI0. output (latchPin, GPI0. LOW)

shiftOut (dataPin, clockPin, MSBFIRST, num[i]&0x7f) #Use “&0x7f”to display the
decimal point

GPIO0. output (1atchPin, GPTI0. HIGH)

time. sleep (0. 5)

def destroy():
GPI0. cleanup ()

if name == main ’: # Program starting from here
print (' Program is starting...’ )
setup ()
try:
loop ()
except KeyboardInterrupt:
destroy ()

First, we need to create encoding for characters “0” to “F" in the array.

[ num = [0xc0, 0x£9, 0xad, 0xb0, 0x99, 0x92, 0x82, 08, 0x80, 0x90, 0x88, 0x83, 0xcé, Oxal, 0x86, Ox8e]

In the “for” loop of loop() function, use the 74HC595 IC Chip to output contents of array “num” successively.
SevenSegmentDisplay can then correctly display the corresponding characters. Pay attention to this in regard
to shiftOut function, the transmission bit, flag bit amd highest bit will be transmitted preferentially.

for i in range (0, len(num)) :
GPI0. output (latchPin, GPIO0. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, num[i]) #0utput the figures and the highest
level is transfered preferentially.
GPIO0. output (1atchPin, GPTI0. HIGH)
time. sleep (0. 5)

If you want to display the decimal point, make the highest bit of each array “0”, which can be implemented
easily by num[i]&0x7f.

. shiftOut (dataPin, clockPin, MSBFIRST, num[i]&0x7f)# Use “&0x7f” to display the decimal
point.

support@freenove.com [l

173



mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com Il

Chapter 14 74HC595 & LED Matrix

Thus far we have learned how to use the 74HC595 IC Chip to control the Bar Graph LED and the 7-Segment

Display. We will now use 74HC595 IC Chips to control an LED Matrix.

Project 14.1 LED Matrix

In this project, we will use two 74HC595 IC chips to control a monochrome (one color) (8X8) LED Matrix to
make it display both simple graphics and characters.

Component List

Raspberry Pi (with 40 GPIO) x1

Breadboard x1

GPIO Extension Board & Ribbon Cable x1

Jumper x36

—-- - -

7T4HC595 x2

8X8 LEDMatrix x1

Resistor 220Q x8

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com support@freenove.com

Component knowledge

LED matrix

An LED Matrix is a rectangular display module that consists of a uniform grid of LEDs. The following is an 8X8
monochrome (one color) LED Matrix containing 64 LEDs (8 rows by 8 columns).

161514131211 10 9
00000000
00000000
00000000
00000000
00000000

123456738

In order to facilitate the operation and reduce the number of ports required to drive this component, the
Positive Poles of the LEDs in each row and Negative Poles of the LEDs in each column are respectively
connected together inside the LED Matrix module, which is called a Common Anode. There is another
arrangement type. Negative Poles of the LEDs in each row and the Positive Poles of the LEDs in each column
are respectively connected together, which is called a Common Cathode.

The LED Matrix that we use in this project is a Common Anode LED Matrix.

Connection mode of Common Anode Connection mode of Common Cathode
133410 6111516 133410 6111516

Vo~ =00 ©
PP PP PR PR PR P

PP KPR PR PR PP
PP PR PR PR PR P PR
PP PR PR PR PR PR P
PP PP P PP
PR PP P PR PR P
PP PR PR PR PR PR P
KK KK KKK
mN\J—‘IT\JO)-bUD
e e - - - -
PP P P Pr PR Pr PR
P _Pr P PR Pe PR PR PR
Pe_P& P PR Pr PR PR PR
P P P Pe Pr PR PR PR
P& Pr Pe Pr PR PR PR
P _Pr P Pe Pr PR PR PR
R R R R K K R K

support@freenove.com [l

175



mailto:support@freenove.com
http://www.freenove.com/

176

support@freenove.com www.freenove.com [l

Here is how a Common Anode LED Matrix works. First, choose 16 ports on RPI board to connect to the 16
ports of LED Matrix. Configure one port in columns for low level, which makes that column the selected port.
Then configure the eight port in the row to display content in the selected column. Add a delay value and
then select the next column that outputs the corresponding content. This kind of operation by column is
called Scan. If you want to display the following image of a smiling face, you can display it in 8 columns, and
each column is represented by one byte.

1 2 3 45 6 7 8
0/0/0/0/0/0/0|0
0/0j1/1/1/1,0/0
0/1/0/0/0/0|1/0
1/0(1(0j0(1]0]|1
110/{0|0|0|0|0]|12
11]0/0|1|1]0(0|12
0/1/0/0/0/0|1/0
0/0j1/1/1/1,0/0

Column Binary Hexadecimal

1 0001 1100 Oxlc

2 0010 0010 0x22

3 0101 0001 0x51

4 0100 0101 0x45

5 0100 0101 0x45

6 0101 0001 0x51

7 0010 0010 0x22

8 0001 1100 Oxlc

To begin, display the first column, then turn off the first column and display the second column. (and so on) ....
turn off the seventh column and display the 8th column, and then start the process over from the first column
again like the control of LED Bar Graph project. The whole process will be repeated rapidly in a loop. Due to
the principle of optical afterglow effect and the vision persistence effect in human sight, we will see a picture
of a smiling face directly rather than individual columns of LEDs turned ON one column at a time (although
in fact this is the reality we cannot perceive).

Scanning rows is another option to display on an LED Matrix (dot matrix grid). Whether scanning by row or
column, 16 GPIO is required. In order to save GPIO ports of control board, two 74HC595 IC Chips are used in
the circuit. Every 74HC595 IC Chip has eight parallel output ports, so two of these have a combined total of
16 ports, which is just enough for our project. The control lines and data lines of the two 74HC595 IC Chips
are not all connected to the RPi, but connect to the Q7 pin of first stage 74HC595 IC Chip and to the data pin
of second IC Chip. The two 74HC595 IC Chips are connected in series, which is the same as using one
"74HC595 IC Chip" with 16 parallel output ports.

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com NS

Circuit

In circuit of this project, the power pin of the 74HC595 IC Chip is connected to 3.3V. It can also be connected
to 5V to make LED Matrix brighter.

Schematic diagram
3.3V 3.3V
Q1 VCC j}g ;_ Q1 VCC 1?
Q2 Qo0 ——-14 row 3 Q2 Qo0 14 -
04 ot [2 I % or I
Qs stcp f2 latchPi] 2los  step |2
83 SH_?vll)R 170 clockPin| 7 83 SH_CNF:R 10 -
1| Gno Q7 i—_JT\ 2200 ]i GND Q7 |2 N
— 74HC595 — 74HC595
X
Esj E_EJ @ g e @ E e 33V 5V
13 3 4 10 6 " 15 16 J'ﬁ g(D_)/L\; ;§88 8
dataPin P1O17 PIO2
[row2 —t % X A A X fatchPin GPI027 GPI1024 |18
Al A A GPI022 GPI025 |-22—
[rowa ) p—= -19dmos| CEO0 24~
21dmiso CE1}26-
o X X X X X XX
[rowa ) — -23.1scLk SCLO |28~
-2L4spAo GPIO12}32—
@‘% A x| A X xR -29.1GPI05 GPI01636—
-311GPI06 GPI020|38—
[@”’( A X X x  A —3-3—8PI813 GPI021 40—
-321GPI019
@2% ﬁ( X X X % ﬁ( }3( ~3L4GPI026 Raspberry Pi
sﬁ‘ ﬁ( ﬁ( ﬁ‘ }3‘ }3‘ ﬁ( ﬂ( GPIOExée'\tlwswnShleld

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

Second stage L
74HCH595: B
Jf————

.
.

LR
L =
o comm—
-
-
[y ——— ——
— .
.
.
L
L ]
LA
..
LR
* > commm
LR
* o oo
.. ==
o o e
L
L
. o
First stage A ghehd
74HC595: A i
j\ * * CEE—
* o Com—
® o » o o
L
e o 00
s o 0 LR
1701d9 AN9* R
o #0Z01d9 9201d9* L >
o #9101d9 6101d9* Ll o
o *aND  £101d9* £IJ >
o L #71.01dD 901do* L L
LI . COIdO* LA LI
. ovase K
L) o ((PL) » commmmD o
L . x)s. LA LR
LA . . ..
LA o o
LA 2
. .
eef o Lzo1do* |8
LRI #2101d5 £101dD* [
. . . IO‘]XH .
LA . .oqxl .
LA . OGNB .
o .
LY o\G .

PIaIys uoisualx3 OIdO Id Aieqdsey

HRERH

e P G W Yo o o 20 2 2

a0 2 2 A ad o 2

i Yo i o 2 A K A

s o A A A M A A

sasmma 222 20 2 20 2 2

TAHCE55 P 05 W So L 2 A o ] A

s w02 3 ] 2 0 ad

IS 88 88 S ( XXX XXX X

123456738

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D< support@freenove.com YR

Code

Two 74HC595 IC Chips are used in this project, one for controlling the LED Matrix’'s columns and the other
for controlling the rows. According to the circuit connection, row data should be sent first, then column data.
The following code will make the LED Matrix display a smiling face, and then display characters "0 to F"
scrolling in a loop on the LED Matrix.

C Code 14.1.1 LEDMatrix

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 14.1.1_LEDMatrix directory of C language.

cd ~/Freenove_Kit/Code/C_Code/14.1.1_LEDMatrix

2. Use following command to compile “LEDMatrix.c” and generate executable file “LEDMatrix”.
gcc LEDMatrix.c -o LEDMatrix -lwiringPi

3. Then run the generated file “LEDMatrix”.

sudo ./LEDMatrix

After the program is executed, the LED Matrix display a smiling face, and then display characters "0 to F"
scrolling in a loop on the LED Matrix.

The following is the program code:

1 #include <wiringPi.h>

2 #include <stdio. h>

3 #include <wiringShift.h>

4

5 #define dataPin 0  //DS Pin of 74HC595(Pinl4)

6 #define latchPin 2  //ST CP Pin of 74HC595 (Pinl2)

7 #tdefine clockPin 3 //SH CP Pin of T74HC595 (Pinl11)

8 // data of smile face

9 unsigned char pic[]={0x1c, 0x22, 0x51, 0x45, 0x45, 0x51, 0x22, Ox1c} ;
10 | unsigned char datal[]l={ // data of "0-F”

11 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ~~
12 0x00, 0x00, 0x3E, 0x41, 0x41, O0x3E, 0x00, 0x00, // “0”
13 0x00, 0x00, 0x21, 0x7F, 0x01, 0x00, 0x00, 0x00, // "1”
14 0x00, 0x00, 0x23, 0x45, 0x49, 0x31, 0x00, 0x00, // "2”
15 0x00, 0x00, 0x22, 0x49, 0x49, 0x36, 0x00, 0x00, // ”3”
16 0x00, 0x00, 0xOE, 0x32, 0x7F, 0x02, 0x00, 0x00, // "4”
17 0x00, 0x00, 0x79, 0x49, 0x49, 0x46, 0x00, 0x00, // 5"
18 0x00, 0x00, 0x3E, 0x49, 0x49, 0x26, 0x00, 0x00, // "6”
19 0x00, 0x00, 0x60, 0x47, 0x48, 0x70, 0x00, 0x00, // 7"
20 0x00, 0x00, 0x36, 0x49, 0x49, 0x36, 0x00, 0x00, // 8"
21 0x00, 0x00, 0x32, 0x49, 0x49, 0x3E, 0x00, 0x00, // "9”
22 0x00, 0x00, 0x3F, 0x44, 0x44, O0x3F, 0x00, 0x00, // "A”
23 0x00, 0x00, 0x7F, 0x49, 0x49, 0x36, 0x00, 0x00, // "B”
24 0x00, 0x00, 0x3E, 0x41, 0x41, 0x22, 0x00, 0x00, // "C”
25 0x00, 0x00, 0x7F, 0x41, 0x41, Ox3E, 0x00, 0x00, // “D”

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

M support@freenove.com

www.freenove.com Il

0x00, 0x00, Ox7F, 0x49, 0x49, 0x41, 0x00, 0x00, // “E”
0x00, 0x00, Ox7F, 0x48, 0x48, 0x40, 0x00, 0x00, // “F”
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // “ ~

s

void shiftOut(int dPin, int cPin, int order, int val) {

int 1i;
for(i = 0; i < 8; i++){
digitalWrite(cPin, LOW);
if (order == LSBFIRST) {
digitalWrite(dPin, ((0x01&(val>>i)) ==
delayMicroseconds (10) ;
1
else {//if (order == MSBFIRST) {
digitalWrite (dPin, ((0x80&(val<<i)) ==
delayMicroseconds (10) ;
1
digitalWrite(cPin, HIGH) ;
delayMicroseconds (10) ;

}
int main(void)
{

int i, j, k;

unsigned char x;

printf ("Program is starting ...\n”);
wiringPiSetup();

pinMode (dataPin, OUTPUT) ;

pinMode (1atchPin, OUTPUT) ;

pinMode (clockPin, OUTPUT) ;
while (1) {

0x01) ? HIGH :

0x80) ? HIGH :

LOW) ;

LOW) ;

for (j=0; j<500; j++) { //Repeat enough times to display the smiling face a period of

time
x=0x80;
for (i=0;i<8;i++) {
digitalWrite(latchPin, LOW) ;

_shiftOut (dataPin, clockPin, MSBFIRST, pic[i]) ;// first shift data of line

information to the first stage 74HC959

_shiftOut (dataPin, clockPin, MSBFIRST, “x) ;//then shift data of column

information to the second stage 74HC959

digitalWrite (latchPin, HIGH) ; //Output data of two stage 74HC595 at the same

B support@freenove.com



mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [EEeH!

time
x»>>=1; //display the next column
delay (1) ;

}
for (k=0;k<sizeof (data)-8;k++) { //sizeof(data) total number of “0-F” columns
for (j=0;j<20;j++) { //times of repeated displaying LEDMatrix in every frame, the
bigger the “j” , the longer the display time
x=0x80; //Set the column information to start from the first column
for (i=k;i<8+k;i++) {
digitalWrite(latchPin, LOW) ;
_shiftOut (dataPin, clockPin, MSBFIRST, datali]) ;
_shiftOut (dataPin, clockPin, MSBFIRST, ~x) ;
digitalWrite (latchPin, HIGH) ;
xo>=1;
delay(1);

}

return 0;

The first “for” loop in the “while” loop is used to display a static smile. Displaying column information from left
to right, one column at a time with a total of 8 columns. This repeats 500 times to ensure sufficient display
time.

for (j=0; j<500; j++) {// Repeat enough times to display the smiling face a period
of time

x=0x80;

for(i=0;i<8;i++) {
digitalWrite (latchPin, LOW) ;
shiftOut (dataPin, clockPin, MSBFIRST, pic[il) ;
shiftOut (dataPin, clockPin, MSBFIRST, “x) :
digitalWrite (latchPin, HIGH) ;
x>>=1;
delay (1) ;

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

The second “for” loop is used to display scrolling characters "0 to F", for a total of 18 X 8 = 144 columns.
Displaying the 0-8 column, then the 1-9 column, then the 2-10 column...... and so on--138-144 column in
consecutively to achieve the scrolling effect. The display of each frame is repeated a certain number of times
and the more repetitions, the longer the single frame display will be and the slower the scrolling movement.
for (k=0;k<{sizeof (data)-8;k++) { //sizeof(data) total number of "0-F” columns
for (j=0;j<20; j++) {// times of repeated displaying LEDMatrix in every frame,

the bigger the “j”, the longer the display time
x=0x80; // Set the column information to start from the first column
for (i=k; i<8+k;i++) {
digitalWrite (latchPin, LOW) ;
shiftOut (dataPin, clockPin, MSBFIRST, datalil) ;
shiftOut (dataPin, clockPin, MSBFIRST, "x) ;
digitalWrite (latchPin, HIGH) ;
x>>=1;
delay(1);

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [EESE

Python Code 14.1.1 LEDMatrix

First, observe the project result, and then learn about the code in detail.
If you have any concerns, please contact us via: support@freenove.com
1. Use cd command to enter 14.1.1_LEDMatrix directory of Python language.

2. Use Python command to execute Python code “LEDMatrix.py”.
After the program is executed, the LED Matrix display a smiling face, and then display characters "0 to F"
scrolling in a loop on the LED Matrix.
The following is the program code;

import RPi.GPIO as GPIO

import time

LSBFIRST =

MSBFIRST = 2

fidefine the pins connect to 74HC595

dataPin = 11 #DS Pin of 74HC595(Pinl4)
latchPin = 13 #ST CP Pin of 74HC595(Pinl2)
clockPin = 15 #SH CP Pin of 74HC595(Pinll)

pic = [0xlc, 0x22, 0x51, 0x45, 0x45, 0x51, 0x22, Oxlc]# data of smiling face
data = [#data of "0-F”
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, Ox3E, 0x41, 0x41, O0x3E, 0x00, 0x00,
0x00, 0x00, 0x21, Ox7F, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x23, 0x45, 0x49, 0x31, 0x00, 0x00,
0x00, 0x00, 0x22, 0x49, 0x49, 0x36, 0x00, 0x00,
0x00, 0x00, OxOE, 0x32, Ox7F, 0x02, 0x00, 0x00,
0x00, 0x00, 0x79, 0x49, 0x49, 0x46, 0x00, 0x00,
0x00, 0x00, Ox3E, 0x49, 0x49, 0x26, 0x00, 0x00,
0x00, 0x00, 0x60, 0x47, 0x48, 0x70, 0x00, 0x00,
0x00, 0x00, 0x36, 0x49, 0x49, 0x36, 0x00, 0x00,
0x00, 0x00, 0x32, 0x49, 0x49, 0x3E, 0x00, 0x00,
0x00, 0x00, O0x3F, 0x44, 0x44, O0x3F, 0x00, 0x00,
0x00, 0x00, Ox7F, 0x49, 0x49, 0x36, 0x00, 0x00,
0x00, 0x00, Ox3E, 0x41, 0x41, 0x22, 0x00, 0x00,
0x00, 0x00, Ox7F, 0x41, 0x41, O0x3E, 0x00, 0x00,
0x00, 0x00, Ox7F, 0x49, 0x49, 0x41, 0x00, 0x00,
0x00, 0x00, Ox7F, 0x48, 0x48, 0x40, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

=+ H# #+ H#*+ H#H O H#F H#+ H#H O HF O H#H H O HF = H O H = H =

def setup():
GPI0. setmode (GPI0. BOARD) # Number GPIOs by its physical location
GPIO. setup(dataPin, GPIO.OUT)
GPI0. setup(latchPin, GPIO. OUT)

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

GPIO. setup(clockPin, GPIO. OUT)

def shiftOut(dPin, cPin, order, val):
for i in range(0, 8):
GPI0. output (cPin, GPI0. LOW) ;
if(order == LSBFIRST) :
GPI0. output (dPin, (0x01&(val>>i)==0x01) and GPIO. HIGH or GPIO. LOW)
elif(order == MSBFIRST) :
GPI0. output (dPin, (0x80& (val<<i)==0x80) and GPIO.HIGH or GPIO.LOW)
GPI0. output (cPin, GPI0. HIGH) ;

def loop():
while True:
for j in range(0, 500) :# Repeat enough times to display the smiling face a period
of time
x=0x80
for i in range(0, 8) :
GPIO0. output (1atchPin, GPI0. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, pic[i]) #first shift data of line
information to first stage 74HC959

shiftOut (dataPin, clockPin, MSBFIRST, ~x) #then shift data of column
information to second stage 74HC959

GPI0. output (latchPin, GPIO. HIGH) # Output data of two stage 74HC595 at the
same time

time. sleep(0.001)# display the next column

x>=1

for k in range(0, len(data)-8) :#len(data) total number of “0-F” columns
for j in range(0, 20) :# times of repeated displaying LEDMatrix in every frame,

” en

the bigger the “j”, the longer the display time.
x=0x80 # Set the column information to start from the first column
for i in range(k, k+8) :

GPI0. output (latchPin, GPI0. LOW)

shiftOut (dataPin, clockPin, MSBFIRST, datal[i])

shiftOut (dataPin, clockPin, MSBFIRST, ~x)

GPIO0. output (latchPin, GPI0. HIGH)

time. sleep(0.001)

x>>=1
def destroy():
GPIO0. cleanup ()
if name == main
print (' Program is starting...’ )
setup ()
try:

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

Loop ()
except KeyboardInterrupt:

destroy ()

The first “for” loop in the “while” loop is used to display a static smile. Displaying column information from left
to right, one column at a time with a total of 8 columns. This repeats 500 times to ensure sufficient display
time.

for j in range(0, 500) :# Repeat enough times to display the smiling face a period
of time
x=0x80
for i in range(0, 8):
GPIO. output (latchPin, GPI0. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, pic[i]) #first shift data of line
information to first stage 74HC959
shiftOut (dataPin, clockPin, MSBFIRST, ~x) #then  shift data  of  column
information to first stage 74HC959

GPI0. output (latchPin, GPI0. HIGH) # Output data of two stage 74HC595 at the
same time.

time. sleep(0.001)# display the next column

x>>=1
The second “for” loop is used to display scrolling characters "0 to F", for a total of 18 X 8 = 144 columns.
Displaying the 0-8 column, then the 1-9 column, then the 2-10 column...... and so on-+-138-144 column in
consecutively to achieve the scrolling effect. The display of each frame is repeated a certain number of times
and the more repetitions, the longer the single frame display will be and the slower the scrolling movement.

for k in range(0, len(data)-8) :#len(data) total number of “0-F” columns
for j in range(0, 20) :# times of repeated displaying LEDMatrix in every frame,
the bigger the “j”, the longer the display time

x=0x80 # Set the column information to start from the first column

for i in range (k, k+8) :
GPI0. output (latchPin, GPTO. LOW)
shiftOut (dataPin, clockPin, MSBFIRST, datal[i])
shiftOut (dataPin, clockPin, MSBFIRST, ~x)
GPI0. output (latchPin, GPI0. HIGH)
time. sleep (0. 001)

x>>=1

support@freenove.com [l

185



mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Chapter 15 LCD1602

In this chapter, we will learn about the LCD1602 Display Screen,

Project 15.1 12C LCD1602

There are LCD1602 display screen and the 12C LCD. We will introduce both of them in this chapter. But what
we use in this project is an 12C LCD1602 display screen. The LCD1602 Display Screen can display 2 lines of
charactersin 16 columns. It is capable of displaying numbers, letters, symbols, ASCIl code and so on. As shown
below is a monochrome LCD1602 Display Screen along with its circuit pin diagram

O—AMSLNO
— AN LNON OO — ———

()

o

O
w0 o-—amswmon~AAdls
28203 BRREREEEGS S
A A AT IS

12C LCD1602 Display Screen integrates a 12C interface, which connects the serial-input & parallel-output
module to the LCD1602 Display Screen. This allows us to only use 4 lines to operate the LCD1602.

-1 GND

2lycc |(mummm
3lcpa ((mmmmm
4] scL ==

12C LCD1602 Module

The serial-to-parallel IC chip used in this module is PCF8574T (PCF8574AT), and its default I12C address is
0x27(0x3F). You can also view the RPI bus on your I2C device address through command "i2cdetect -y 1"
(refer to the "configuration 12C" section below).

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com

D4 support@freenove.com

Below is the PCF8574 chip pin diagram and its module pin diagram:

PCF8574 chip pin diagram:

A0 [ 1] U

A1 [2]

e [3

Po [4] pcresra
PCF8574A

P1 [5]
P2 6]
P3 [7]
Vss [2]

[16] Voo
[15] spa
14] scL
13 ] INT
12] P7
[11] Ps
[10] P5
(9] P4

PCF8574 module pin diagram

BlazBRIE[Blele [~vlo ol oo |~

GND

[TT1

PCF8574

PCF8574 module pins and LCD1602 pins correspond to each other and connected to each other:

Because of this, as stated earlier, we only need 4 pins to control thel6 pins of the LCD1602 Display Screen

through the 12C interface.

GNDf—
VCC|—
SDA}—

SCL|—

PCF8574

i

volP—3{ vo

vssH—| GND
vbp}2—2] vbp
Rs4-4| po

R

E[6-&|po
5)=o] A INTSS
pe1}8-8{ ne

pe2l2 9] ne

pe3[1210 NG
pB4f 11 py
pe5[1212| ps
pes|313| pg
pe7[1414{ p7
LED+[1515] p3
LED-[618] GnD

LCD1602

In this project, we will use the |2C LCD1602 to display some static characters and dynamic variables.

Component List

Raspberry Pi (with 40 GPIO) x1

GPIO Extension Board & Ribbon Cable x1

Breadboard x1

Jumper Wire x4

—-a--. 44444444

12C LCD1602 Module x1

support@freenove.com [l

187



mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com Il

Circuit

Note that the power supply for 1I2C LCD1602 in this circuit is 5V.

Schematic diagram

GND

255

SCL

FPE—])

12C LCD1602 Module

3.3V 5V
3 Ispa1 TXDO =8~
S 1scL1 RXDO 1O
—L1GPIO4 GPIO18}12
AGpio17 GPI1023}-16
131GPI027 GPI1024}-18
121Gpi022 GPI1025 22
-19.1Mos| CEO |24~
21Imiso CE1}26
231sCLK SCLO 28—
271SDA0 GPIO12}32—
291GPI0O5 GPIO16}36—
S11GPios GP1020 38—
331GPI013 GP1021}40
Jj%eplow
(GP1026 Raspberry Pi
GPIO Extension Shield
GND

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com
NOTE: It is necessary to configure 12C and install Smbus first (see chapter 7 for details)

® o 0o 00 0 00
® o 0o 000 00
® o 0o 0900 0 0
® o 0o 0 0 0 0 0
® e 0 00 0 00

® o 0o 0 00 0 0

® © 0 00 000 00000 0 0 00
® © 0 00 000000000 0 00
© © 0 0 0 00 0 00 0 00 000000 0 0 000 0
® © 0 0 0000 00 0000 0 00
L R L B B D R B B B B

Sl =
-
- <
— (%]
- c
- I
-~
= c
- B

2
= I
- w
=
= o
Ly O
- o
.
= =
] ©
] o
- Q
- B2
- ©
- o

B support@freenove.com



mailto:support@freenove.com
http://www.freenove.com/
mailto:support@freenove.com

B www.freenove.com

D4 support@freenove.com

Code

This code will have your RPi’'s CPU temperature and System Time Displayed on the LCD1602.
C Code 15.1.1 12CLCD1602
If you did not configure 12C and install Smbus, please refer to Chapter 7. If you did, please continue.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1.

Use cd command to enter 15.1.1_12CLCD1602 directory of C code.

cd ~/Freenove Kit/Code/C_Code/15.1.1_12CLCD1602

2. Use following command to compile “I12CLCD1602.c” and generate executable file “I2CLCD1602".
gcc I2CLCD1602.c -0 12CLCD1602 -lwiringPi -lwiringPiDev

3. Then run the generated file “I2CLCD1602".

sudo ./I2CLCD1602

After the program is executed, the LCD1602 Screen will display your RPi's CPU Temperature and System Time.
NOTE: After the program is executed, if you cannot see anything on the display or the display is not
clear, try rotating the white knob on back of LCD1602 slowly, which adjusts the contrast, until the screen

can display the Time and Temperature clearly.

The following is the program code:

A& sop —
rfqAM -~
oga

'@

= P 1 s

i% - pagaes QOO

QAPASS CImEd

-

1

© 0 3 O U1 & W N

— = = = e
Gl B W N = O

—
»

#include <stdlib.h>
#include <stdio.h>
#include <wiringPi.h>
#include <wiringPilI2C.h>
#include <pcf8574. h>
#include <lcd.h>

#include <time.h>

int pcf8574 address = 0x27;

// PCE8574T:0x27, PCF8574AT:0x3F

#define BASE 64 // BASE any number above 64
//Define the output pins of the PCF8574, which are directly connected to the LCD1602 pin

#tdefine RS BASE+0
#tdefine RW BASE+1
#tdefine EN BASE+2
#define LED BASE+3
#tdefine D4 BASE+4

support@freenove.com [l

189



mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

#define Db BASE+5
#define D6 BASE+6
#define D7 BASE+7

int ledhd;// used to handle LCD
void printCPUTemperature() {// sub function used to print CPU temperature
FILE *fp;
char str temp[15];
float CPU_temp;
// CPU temperature data is stored in this directory
fp=fopen(”/sys/class/thermal/thermal zoneO/temp”, "r”);
fgets(str temp, 15, fp) ; // read file temp
CPU temp = atof(str temp)/1000.0; // convert to Celsius degrees

printf ("CPU' s temperature : % 2f \n”, CPU temp);

lcdPosition(ledhd, 0, 0) ; // set the LCD cursor position to (0, 0)
ledPrintf (1cdhd, “CPU:%. 2fC”, CPU_temp) ;// Display CPU temperature on LCD
fclose (fp) ;

1
void printDataTime () {//used to print system time
time t rawtime;
struct tm *timeinfo;
time (&rawtime) ;// get system time
timeinfo = localtime (&rawtime) ;//convert to local time
printf ("%s \n”, asctime (timeinfo));
ledPosition(ledhd, 0, 1) ;// set the LCD cursor position to (0, 1)

lcdPrintf (ledhd, “Time:%02d:%02d:%02d”, timeinfo—>tm hour, timeinfo—>tm min, timeinfo—>tm sec) ;
//Display system time on LCD
}
int detectI2C(int addr) { //Used to detect i2c address of LCD
int fd = wiringPil2CSetup (addr);
if ((fd < 0){
printf ("Error address : Ox%x \n”, addr) ;
return 0 ;
}
else{
if (wiringPil2CWrite( £d, 0) < 0) {

printf ("Not found device in address Ox%x \n”, addr);

return 0;

}

else{
printf ("Found device in address 0x%x \n”, addr):
return 1 ;

}

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [EEEI

1
int main(void) {
int 1i;
printf ("Program is starting ...\n”);
wiringPiSetup() ;
if (detectI2C(0x27)) {
pcf8574 address = 0x27;
Jelse if(detectI2C(0x3F)) {
pcf8574 address = 0x3F;
Jelse{
printf("No correct I2C address found, \n”
"Please use command ’i2cdetect —y 1’ to check the I2C address! \n”
“Program Exit. \n”);
return —1;
}
pcf8574Setup (BASE, pcf8574 address);//initialize PCF8574
for (i=0;i<8;i++) {

pinMode (BASE+i, OUTPUT) ; //set PCF8574 port to output mode
}
digitalWrite (LED, HIGH) ; //turn on LCD backlight
digitalWrite (RW, LOW) ; //allow writing to LCD

ledhd = lcdInit(2, 16, 4, RS, EN, D4, D5, D6, D7, 0,0,0,0) ;// initialize LCD and return “handle”
used to handle LCD

if (ledhd == -1) {
printf(“ledInit failed !7);
return 1;

}

while (1) {
printCPUTemperature() ;//print CPU temperature
printDataTime () ; // print system time
delay (1000) ;

}

return 0;

From the code, we can see that the PCF8591 and the PCF8574 have many similarities in using the 12C interface
to expand the GPIO RPI.
First, define the 12C address of the PCF8574 and the Extension of the GPIO pin, which is connected to the

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

GPIO pin of the LCD1602. LCD1602 has two different i2c addresses. Set 0x27 as default.

int pcf8574 address = 0x27; // PCF8574T:0x27, PCF8574AT:0x3F
#tdefine BASE 64 // BASE any number above 64

//Define the output pins of the PCF8574, which are directly connected to the LCD1602 pin
#tdefine RS BASE+0

#define RW BASE+1

#define EN BASE+2

#tdefine LED BASE+3

#tdefine D4 BASE+4

#define D5 BASE+5

#tdefine D6 BASE+6

#define D7 BASE+7

Then, in main function, initialize the PCF8574, set all the pins to output mode, and turn ON the LCD1602
backlight (without the backlight the Display is difficult to read).
pcf8574Setup (BASE, pcf8574 address) ;// initialize PCF8574
for (i=0;1<8;i++) {
pinMode (BASE+i, OUTPUT) ; // set PCF8574 port to output mode

}

digitalWrite (LED, HIGH) ; // turn on LCD backlight
Then use Icdinit() to initialize LCD1602 and set the RW pin of LCD1602 to 0 (can be written) according to
requirements of this function. The return value of the function called "Handle" is used to handle LCD1602".

lcdhd = ledInit (2, 16, 4, RS, EN, D4, D5, D6, D7,0,0,0,0) ;// initialize LCD and return
“handle” wused to handle LCD

Details about IcdInit():

This is the main initialization function and must be executd first before you use any other LCD functions.
Rows and cols are the rows and columns of the Display (e.g. 2, 16 or 4, 20). Bits is the number of how wide
the number of bits is on the interface (4 or 8). The rs and strb represent the pin numbers of the Display’s
RS pin and Strobe (E) pin. The parameters d0 through d7 are the pin numbers of the 8 data pins connected
from the RPi to the display. Only the first 4 are used if you are running the display in 4-bit mode.
The return value is the ‘handle’ to be used for all subsequent calls to the Icd library when dealing with that
LCD, or -1 to indicate a fault (usually incorrect parameter)
For more details about LCD Library, please refer to: https://projects.drogon.net/raspberry - pi/wiringpi/lcd -
library/
In the next “while”, two subfunctions are called to display the RPi’'s CPU Temperature and the SystemTime.
First look at subfunction printCPUTemperature(). The CPU temperature data is stored in the
"/sys/class/thermal/thermal zone0/temp” file. We need to read the contents of this file, which converts it to
temperature value stored in variable CPU_temp and uses lcdPrintf() to display it on LCD.

void printCPUTemperature () {//subfunction used to print CPU temperature

FILE *fp;
char str templ[15]:

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/
https://projects.drogon.net/raspberry-pi/wiringpi/lcd-library/
https://projects.drogon.net/raspberry-pi/wiringpi/lcd-library/

B www.freenove.com D4 support@freenove.com

float CPU_ temp;

// CPU temperature data is stored in this directory.
fp=fopen("/sys/class/thermal/thermal zone0/temp”, "r”

fgets (str_temp, 15, fp) ; // read file temp

CPU temp = atof(str temp)/1000.0; // convert to Celsius degrees

printf ("CPU" s temperature : % 2f \n”, CPU_temp) ;

lcdPosition(1edhd, 0, 0) ; // set the LCD cursor position to (0, 0)
lcdPrintf (lcdhd, “CPU:%. 2£C”, CPU_temp) ;// Display CPU temperature on LCD
fclose (fp) ;

}

Details about lcdPosition() and IcdPrintf():

Set the position of the cursor for subsequent text entry.

These output a single ASCII character, a string or a formatted string using the usual print formatting
commands to display individual characters (it is how you are able to see characters on your computer
monitor).

Next is subfunction printDataTime() used to display System Time. First, it gets the Standard Time and stores
it into variable Rawtime, and then converts it to the Local Time and stores it into timeinfo, and finally displays
the Time information on the LCD1602 Display.

void printDataTime () {//used to print system time

time t rawtime;

struct tm *timeinfo;

time (&rawtime) ;// get system time

timeinfo = localtime (&rawtime);// convert to local time

printf ("%s \n”, asctime (timeinfo)) ;

ledPosition(ledhd, 0, 1) ;// set the LCD cursor position to (0, 1)

ledPrintf (1edhd, “Time:%d:%d:%d”, timeinfo—>tm hour, timeinfo—>tm min, timeinfo—>tm sec) ;
//Display system time on LCD
1

support@freenove.com [l

193



mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

Python Code 15.1.1 12CLCD1602

If you did not configure 12C and install Smbus, please refer to Chapter 7. If you did, continue.

First, observe the project result, and then learn about the code in detail.

If you have any concerns, please contact us via: support@freenove.com

1. Use cd command to enter 15.1.1_ 12CLCD1602 directory of Python code.

cd ~/Freenove_Kit/Code/Python_Code/15.1.1_12CLCD1602

2. Use Python command to execute Python code “I2CLCD1602.py”.

python 12CLCD1602.py

After the program is executed, the LCD1602 Screen will display your RPi’s CPU Temperature and System Time.
NOTE: After the program is executed, if you cannot see anything on the display or the display is not
clear, try rotating the white knob on back of LCD1602 slowly, which adjusts the contrast, until the screen
can display the Time and Temperature clearly.

- B AESes

The following is the program code:

1 from PCF8574 import PCF8574 GPIO

2 from Adafruit LCD1602 import Adafruit CharLCD

S

4 from time import sleep, strftime

5 from datetime import datetime

6

7 def get cpu temp(): # get CPU temperature and store it into file
8 ”/sys/class/thermal/thermal zone0/temp”

9 tmp = open(’ /sys/class/thermal/thermal zoneO/temp’)
10 cpu = tmp. read()

11 tmp. close ()

12 return ' {:. 2} . format( float(cpu)/1000 ) +

13

14 def get time now(): # get system time

15 return datetime. now(). strftime ( %H: %M: %S’ )

16

17 | def loop():

18 mep. output (3, 1) # turn on LCD backlight

19 led. begin (16, 2) # set number of LCD lines and columns
20 while (True) :

21 #tlcd. clear ()

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com

lcd. setCursor (0,0) # set cursor position

lcd. message( "CPU: ~ + get cpu temp()+ \n )# display CPU temperature
lcd. message( get time now() ) # display the time

sleep (1)

def destroy():
lcd. clear()

PCF8574 address = 0x27 # 12C address of the PCF8574 chip.
PCF8574A address = Ox3F # 12C address of the PCF8574A chip.
# Create PCF8574 GPIO adapter.
try:
mcp = PCF8574 GPIO(PCF8574 address)
except:
try:
mep = PCF8574 GPIO(PCF8574A address)
except:
print ( 12C Address Error !7)
exit (1)
# Create LCD, passing in MCP GPIO adapter.
lcd = Adafruit CharLCD(pin rs=0, pin_e=2, pins_db=[4, 5,6, 7], GPIO=mcp)

if name == main ’
print (' Program is starting ... )
try:
loop ()
except KeyboardInterrupt:
destroy ()

Two modules are used in the code, PCF8574.py and Adafruit_LCD1602.py. These two documents and the
code files are stored in the same directory, and neither of them is dispensable. Please DO NOT DELETE THEM!
PCF8574.py is used to provide 12C communication mode and operation method of some of the ports for the
RPi and PCF8574 IC Chip. Adafruit module Adafruit_LCD1602.py is used to provide some functional operation
method for the LCD1602 Display.
In the code, first get the object used to operate the PCF8574's port, then get the object used to operate the
LCD1602.

address = 0x27 # 12C address of the PCF8574 chip.

# Create PCF8574 GPIO adapter.

mep = PCF8574 GPIO(address)

# Create LCD, passing in MCP GPIO adapter.

led = Adafruit CharLCD(pin rs=0, pin e=2, pins db=[4, 5,6, 7], GPIO=mcp)
According to the circuit connection, port 3 of PCF8574 is connected to the positive pole of the LCD1602
Display’s backlight. Then in the loop () function, use of mcp.output (3,1) to turn the LCD1602 Display’s
backlight ON and then set the number of LCD lines and columns,

support@freenove.com [l

195



mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com www.freenove.com [l

def loop():
mep. output (3, 1) # turn on the LCD backlight
lcd. begin (16, 2) # set number of LCD lines and columns

In the next while loop, set the cursor position, and display the CPU temperature and time.
while (True) :
#lcd. clear ()

led. setCursor (0, 0) # set cursor position

led. message( " CPU: 7 + get cpu temp()+ \n )# display CPU temperature
lcd. message( get time now() ) # display the time

sleep (1)

CPU temperature is stored in file “/sys/class/thermal/thermal_zone0/temp”. Open the file and read content of
the file, and then convert it to Celsius degrees and return. Subfunction used to get CPU temperature is shown

def get cpu temp(: # get CPU temperature and store it into file
“/sys/class/thermal/thermal zone0/temp”
tmp = open(’ /sys/class/thermal/thermal zoneO/temp’)
cpu = tmp. read()
tmp. close ()
return ' {:.2f} . format ( float(cpu)/1000 ) +
Subfunction used to get time:

o

@
_O

2

def get time now(): # get the time
return datetime. now(). strftime ( %H: %M: %S’ )

Details about PCF8574.py and Adafruit_LCD1602.py:

|

This module provides two classes PCF8574_12C and PCF8574_GPIO.
Class PCF8574_12C: provides reading and writing method for PCF8574.
Class PCF8574_GPIO: provides a standardized set of GPIO functions.
More information can be viewed through opening PCF8574.py.
Adafruit_LCD1602 Module

This module provides the basic operation method of LCD1602, including class Adafruit_CharLCD. Some
member functions are described as follows:

def begin(self, cols, lines): set the number of lines and columns of the screen.

def clear(self): clear the screen

def setCursor(self, col, row): set the cursor position

def message(self, text): display contents

More information can be viewed through opening Adafruit_CharLCD.py.

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com K

Chapter 16 Web loT

In this chapter, we will learn how to use GPIO to control the RPi remotely via a network and how to build a
WeblO service on the RPi.

This concept is known as “loT” or Internet of Things. The development of loT will greatly change our habits
and make our lives more convenient and efficient

Project 16.1 Remote LED

In this project, we need to build a WeblOPi service, and then use the RPi GPIO to control an LED through the
web browser of phone or PC.

Component List

Raspberry Pi (with 40 GPIO) x1 LED x1 Resistor 220Q x1
GPIO Extension Board & Ribbon Cable x1
Breadboard x1

Jumper M/M x2
— - - -

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/

< support@freenove.com

www.freenove.com [l

Circuit

Schematic diagram

R1
220Q

WW

LED1

REBRRNERE G L

3.3V 5V

[SDA1 TXDO }=8—
SCL1 RXDO {10
| GPI04 GPIO18}12~
GPIO17 GP1023 16
|GPI1027 GP1024 18
|GPI1022 GPI025}22
IMOSI CEQ}24—~
IMISO CE1}28~
'SCLK SCLO 28~
|SDAO GPIO12}32
|GPIO5 GPI016}-36
| GPI06 GPI1020}-38
|GPIO13 GPI021 40
(GPIO19
GP1026 Raspberry Pi

GPIO Extension Shield

GND

AAAARAAARARARARARARARARARARARARAAAIALANT

Hardware connection. If you need any support, please feel free to contact us via: support@freenove.com

e -

Raspberry Pi GPIO Extension Shield

B support@freenove.com



mailto:support@freenove.com
http://www.freenove.com/

B www.freenove.com D4 support@freenove.com [EEKE

Solution from E-Tinkers

Here is a solution fromblog E-Tinkers, author Henry Cheung. For more details, please refer to link below:
https://www.e-tinkers.com/2018/04/how-to-control-raspberry-pi-gpio-via-http-web-server/

1, Make sure you have set python3 as default python. Then run following command in terminal to install
http.server in your Raspberry Pi.
sudo apt-get install http.server

2, Open WeblO.py
cd ~/Freenove_Kit/Code/Python_Code/16.1.1_WeblO
geany WeblO.py

3, Change the host_name into your Raspberry Pi IP address.
host name = ~192.168. 1. 112’ # Change this to your Raspberry Pi IP address
Then run the code WeblO.py

WeblO.py - /home/pi - Geany

View Document Project Build Tools Help
B 2 X e © - < g | £

WeblOpy

import RP1.GPIO as GPIO
import os
from http.server import BaseHTTPReguestHandler, HTTPServer

'162.168.1.112" # Change this to your Raspberry P1 IP address

8000 o

%class MyServer (BaseHTTPReguestHandler):

host_name
host_port

"t"A special implementation of BaseHTTPReguestHander for reading data from
and control GPIO of a Raspberry P1i

Lo I o < JCN o T Y S P T X ]

(=

3, Visit http://192.168.1.112:8000/ in web brower on compter under local area networks. Change IP to your
Raspberry Pi IP address.

192.168.1.112:8000 - Chromium

[ @1921681.1128000 x| +

&« > C A F%#£|192168.1.112:8000 <5

‘Welcome to my Raspberry Pi

Current GPU temperature is 53.0'C

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/
https://www.e-tinkers.com/2018/04/how-to-control-raspberry-pi-gpio-via-http-web-server/
http://192.168.1.112:8000/

200

support@freenove.com www.freenove.com Il

WeblOPi Service Framework

Note: If you have a Raspberry Pi 4B, you may have some trouble. The reason for changing the file in the
configuration process is that the newer generation models of the RPi CPUs are different form the older
ones and you may not be able to access the GPIO Header at the end of this tutorial. A solution to this is
given in an online tutorial by from E-Tinkers blogger Henry Cheung. For more details, please refer to previouse
section.

The following is the key part of this chapter. The installation steps refer to WeblOPi official. And you also can
directly refer to the official installation steps. The latest version (in 2016-6-27) of WeblOPi is 0.7.1. So, you
may encounter some issues in using it. We will explain these issues and provide the solution in the following
installation steps.

Here are the steps to build a WebIOPi:

Installation

1. Get the installation package. You can use the following command to obtain.

wget https://github.com/Freenove/\WWeblOPi/archive/master.zip -O WeblOPi.zip
2. Extract the package and generate a folder named "WeblOPi-master”. Then enter the folder.

unzip WebIOPi.zip

cd WeblOPi-master/WeblOPi-0.7.1

3. Patch for Raspberry Pi B+, 2B, 3B, 3B+.

patch -p1 -i webiopi-pi2bplus.patch

4. Run setup.sh to start the installation, the process takes a while and you will need to be patient.

sudo ./setup.sh
5. If setup.sh does not have permission to execute, execute the following command

sudo sh ./setup.sh
Run

After the installation is completed, you can use the webiopi command to start running.

$ sudo webiopi [-h] [-c config] [-] log] [-s script] [-d] [port]

Options:
-h, --help Display this help
-c, --config file Load config from file
-l, --log file Log to file
-s, --script  file  Load script from file

-d, --debug Enable DEBUG
Arguments:
port Port to bind the HTTP Server

Run webiopi with verbose output and the default config file:
sudo webiopi -d -c /etc/webiopi/config
The Port is 8000 in default. Now WeblOPi has been launched. Keep it running.

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/
https://github.com/Freenove/WebIOPi/archive/master.zip

B www.freenove.com DX support@freenove.com  [4SNH

Access WebIOPi over local network

Under the same network, use a mobile phone or PC browser to open your RPi IP address, and add a port
number like 8000. For example, my personal Raspberry Pi IP address is 192.168.1.109. Then, in the browser, |
then should input: http://192.168.1.109:8000/

Default user is "webiopi" and password is "raspberry”.

Then, enter the main control interface:

WebIOPi Main Menu

GPI0O Header

Contral and Debuz the Easpberry Fi1 GPIO with a display which locks like the physical header.

GPIO List

Control and Debug the Raspberrv Fi GPIO ordered in a single column.

Serial Monitor

Use the browser to play with Serlal interfaces conflzured in WebIOPi.

Devices Monitor

Control and Debug devices and clrcults wired to vour Pi and confizured in WebIOPI.

Click on GPIO Header to enter the GPIO control interface.

sav[ ][l s ov
iz soa[__ | [El s.ov
12¢ scL[_| [ srouno
onewire [JEj] [ varT
aroun [ &Y varT rx
IR 11 | 12 [EIGRE
]  crio 27 [EE] Y srouno
N CIPP] 15 | 16 [P
aav[] [ erro 24
ario 10| |E&J srouno
5 ceioo[  |[Ecrio2s
ario11[_|[]erios
arouno B[] srio 7
]  cros[] [ crouno
Bl  cros[]EYcrio2
N CIRE] 33 | 34 [ENIUNG
N CIRE] 35 | 36 [ELIGRE
N LR 37 | 38 [ELIGEN
arouno [ [ crio 21

(=
por

i
(=
por

Control methods:
® Click/Tap the OUT/IN button to change GPIO direction.
® (lick/Tap pins to change the GPIO output state.

support@freenove.com [l


mailto:support@freenove.com
http://www.freenove.com/
http://192.168.1.109:8000/

< support@freenove.com www.freenove.com [l

Completed

According to the circuit we build, set GPIO17 to OUT, then click Header11 to control the LED.
You can end the webioPi in the terminal by “Ctr+C".

What's Next?

THANK YOU for participating in this learning experience! If you have completed all of the projects successfully
you can consider yourself a Raspberry Pi Master.

We have reached the end of this Tutorial. If you find errors, omissions or you have suggestions and/or
qguestions about the Tutorial or component contents of this Kit, please feel free to contact us:
support@freenove.com

We will make every effort to make changes and correct errors as soon as feasibly possible and publish a
revised version.

If you are interesting in processing, you can study the Processing.pdf in the unzipped folder.

If you want to learn more about Arduino, Raspberry Pi, Smart Cars, Robotics and other interesting products
in science and technology, please continue to visit our website. We will continue to launch fun, cost -effective,
innovative and exciting products.

http://www.freenove.com/

Thank you again for choosing Freenove products.

B support@freenove.com


mailto:support@freenove.com
http://www.freenove.com/
http://www.freenove.com/

	Getting Started
	Remove the Chips
	Safety and Precautions
	About Freenove
	Copyright

	Contents
	Preface
	Raspberry Pi
	Installing an Operating System
	Component List
	Required Components

	Optional Components
	Required Accessories for Monitor
	Required Accessories for Remote Desktop

	Raspberry Pi OS
	Automatically Method
	Manually Method
	Write System to Micro SD Card

	Enable ssh and configure WiFi
	Insert SD card

	Getting Started with Raspberry Pi
	Monitor desktop
	Remote desktop & VNC
	MAC OS Remote Desktop
	Windows OS Remote Desktop
	VNC Viewer & VNC
	Enable VNC
	Set Resolution




	Chapter 0 Preparation
	Linux Command
	Shortcut Key

	Install WiringPi
	WiringPi Installation Steps

	Obtain the Project Code
	Python2 & Python3

	Chapter 1 LED
	Project 1.1 Blink
	Component List
	GPIO
	BCM GPIO Numbering
	PHYSICAL Numbering
	WiringPi GPIO Numbering

	Circuit
	Component knowledge
	LED
	Resistor
	Breadboard
	GPIO Extension Board

	Code
	C Code 1.1.1 Blink
	Python Code 1.1.1 Blink

	Other Code Editors (Optional)
	nano
	geany


	Freenove Car, Robot and other products for Raspberry Pi

	Chapter 2 Buttons & LEDs
	Project 2.1 Push Button Switch & LED
	Component List
	Component knowledge
	Push Button Switch

	Circuit
	Code
	C Code 2.1.1 ButtonLED
	Python Code 2.1.1 ButtonLED


	Project 2.2 MINI Table Lamp
	Debounce a Push Button Switch
	Code
	C Code 2.2.1 Tablelamp
	Python Code 2.2.1 Tablelamp



	Chapter 3 LED Bar Graph
	Project 3.1 Flowing Water Light
	Component List
	Component knowledge
	Bar Graph LED

	Circuit
	Code
	C Code 3.1.1 LightWater
	Python Code 3.1.1 LightWater



	Chapter 4 Analog & PWM
	Project 4.1 Breathing LED
	Component List
	Component Knowledge
	Analog & Digital
	PWM

	Circuit
	Code
	C Code 4.1.1 BreathingLED
	Python Code 4.1.1 BreathingLED



	Chapter 5 RGB LED
	Project 5.1 Multicolored LED
	Component List
	Circuit
	Code
	C Code 5.1.1 Colorful LED
	Python Code 5.1.1 ColorfulLED



	Chapter 6 Buzzer
	Project 6.1 Doorbell
	Component List
	Component knowledge
	Buzzer
	Transistors

	Circuit
	Code
	C Code 6.1.1 Doorbell
	Python Code 6.1.1 Doorbell


	Project 6.2 Alertor
	Code
	C Code 6.2.1 Alertor
	Python Code 6.2.1 Alertor



	(Important) Chapter 7 ADC
	Project 7.1 Read the Voltage of Potentiometer
	Component List
	Circuit knowledge
	ADC
	DAC

	Component knowledge
	Potentiometer
	Rotary potentiometer
	PCF8591
	ADS7830
	I2C communication

	Circuit with ADS7830
	Circuit with PCF8591
	Configure I2C and Install Smbus
	Enable I2C
	Install I2C-Tools
	Install Smbus Module

	Code
	C Code 7.1.1 ADC
	Python Code 7.1.1 ADC
	Reference



	Chapter 8 Potentiometer & LED
	Project 8.1 Soft Light
	Component List
	Circuit with ADS7830
	Circuit with PCF8591
	Code
	C Code 8.1.1 Softlight
	Python Code 8.1.1 Softlight



	Chapter 9 Photoresistor & LED
	Project 9.1 NightLamp
	Component List
	Photoresistor

	Circuit with ADS7830
	Circuit with PCF8591
	Code
	C Code 9.1.1 Nightlamp
	Python Code 9.1.1 Nightlamp



	Chapter 10 Thermistor
	Project 10.1 Thermometer
	Component List
	Component knowledge
	Thermistor

	Circuit with ADS7830
	Circuit with PCF8591
	Code
	C Code 10.1.1 Thermometer
	Python Code 10.1.1 Thermometer



	Chapter 11 Motor & Driver
	Project 11.1 Control a DC Motor with a Potentiometer
	Component List
	Component knowledge
	Breadboard Power Module
	DC Motor
	L293D

	Circuit with ADS7830
	Circuit with PCF8591
	Code
	C Code 11.1.1 Motor
	Python Code 11.1.1 Motor



	Chapter 12 74HC595 & Bar Graph LED
	Project 12.1 Flowing Water Light
	Component List
	Component knowledge
	74HC595

	Circuit
	Code
	C Code 12.1.1 LightWater02
	Python Code 12.1.1 LightWater02



	Chapter 13 74HC595 & 7-Segment Display
	Project 13.1 7-Segment Display
	Component List
	Component knowledge
	7-segment display

	Circuit
	Code
	C Code 13.1.1 SevenSegmentDisplay
	Python Code 13.1.1 SevenSegmentDisplay



	Chapter 14 74HC595 & LED Matrix
	Project 14.1 LED Matrix
	Component List
	Component knowledge
	LED matrix

	Circuit
	Code
	C Code 14.1.1 LEDMatrix
	Python Code 14.1.1 LEDMatrix



	Chapter 15 LCD1602
	Project 15.1 I2C LCD1602
	Component List
	Circuit
	Code
	C Code 15.1.1 I2CLCD1602
	Python Code 15.1.1 I2CLCD1602



	Chapter 16 Web IoT
	Project 16.1 Remote LED
	Component List
	Circuit
	Solution from E-Tinkers
	WebIOPi Service Framework
	Installation
	Run
	Access WebIOPi over local network
	Completed



	What's Next?

